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Abstract. This paper addresses the problem of personalized computation of fractional flow
reserve (FFR). FFR is considered to be the golden standard for making decision on surgical
treatment of coronary vessels with multiple stenoses. Computer simulations could simplify the
process by non-invasive estimation of FFR based on one-dimensional blood flow model. In this
work a problem of two consecutive stenoses is studied. It is shown that in some cases only one
of the stenoses has to be to removed, while the other one is insignificant. The structure of vessels
is based on patient CT scans. An emphasis is made on the boundary conditions in bifurcation
points of the vessels.
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1 Introduction

Heart diseases are the leading causes of sudden deaths in developed countries. One of the
main reasons of heart failures are coronary stenoses. They can cause myocard ischemia which
frequently results in disability or death. The main treatment of severe coronary stenosis is
invasive endovascular intervention, i.e. stenting. Some stenoses can be treated with drugs
without surgical intervention. Decision on the type of treatment is based on the estimate of
haemodynamic importance of the lesion.

The modern golden standard for making decision on the type of treatment is the fractional
flow reserve (FFR) [1, 2, 3]. FFR is defined as the ratio of average blood pressure distal to
stenosis to average blood pressure in aorta under conditions of vasodilator administration [1].
Stenosis with FFR below 0.7-0.8 is considered to be severe and should be treated with endovas-
cular surgical intervention. Stenosis with FFR above 0.8 can be treated with drug therapy. The
FFR based assessment of stenosis helps to reduce the number of expensive operations as well
as the number of incidences which caused disability or death [4].

Modern methods of the numerical FFR estimation involve 3D blood flow modelling in the
local region of the studied vessel [1, 2]. It requires substantial computational resources but
gives a detailed picture of blood flow. Another approach is based on 1D blood flow modelling
of coronary region [5, 6]. One-dimensional approach allows to simulate substantial part of
coronary region with several stenoses in different locations.

Cases with several stenoses complicate the FFR estimation [8, 9]. In some cases all lesions
should be treated surgically while in others certain lesions can be ignored. 1D models allow to
run a series of simulations for each surgical strategy and estimate its haemodynamical impact
in a short time. In this work we demonstrate how 1D simulations can be used to study the inter-
action between two consecutive stenoses. The structure of computational domain was obtained
from patient’s CT-scans [10].

2 Methods

2.1 Blood flow model

The blood flow model used to estimate FFR considers unsteady viscous incompressible fluid
flow through a 1D network of elastic tubes [6, 11]. The patient-specific network of coronary
arteries was constructed on the basis of CT images [10]. In this section a brief description of
the model is presented, for details we refer to [6, 11]. The flow in every vessel is described by
mass and momentum balances

∂Ak/∂t+ ∂(Akuk) /∂x = 0, (1)
∂uk/∂t+ ∂

(
u2k/2 + pk/ρ

)
/∂x = ffr(Ak, uk) , (2)

where k is the index of the vessel; t is the time; x is the distance along the vessel counted from
the vessel junction point; ρ is the blood density (constant); Ak(t, x) is the vessel cross-section
area; pk is the blood pressure; uk(t, x) is the linear velocity averaged over the cross-section;
ftr is the friction force. The relationship between pressure and cross-section is defined by the
wall-state equation:

pk(Ak)− p∗k = ρwc
2
kf(Ak) , (3)

where ρw is the vessel wall density (constant); p∗k is the pressure in tissues surrounding the
vessel; ck defines elastic properties of the wall and can be considered as the speed of small
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disturbances propagation [12]; f(Ak) is defined by

f(Ak) =

{
exp (Ak/A0k − 1)− 1, Ak/A0k > 1

lnAk/A0k, Ak/A0k 6 1,
(4)

A0k is the unstressed vessel cross-sectional area.
At the entry point of the aorta the blood flow is assigned

u(t, 0)A(t, 0) = QH (t) . (5)

Here functionQH(t) corresponds to the heart rate value of 1 Hz and stroke volume of 65 ml [13].
At the bifurcation points the Poiseuille’s pressure drop condition is used

pk (Ak (t, x̃k))− plnode (t) = εkR
l
kAk (t, x̃k)uk (t, x̃k) , k = k1, k2, . . . , kM , (6)

where Rk represents the hydraulic resistance of k-th vessel. Networks of veins and arteries are
connected by similar pressure drop conditions.

At the terminal point of the venous system the pressure pH = 8mmHg is set as the boundary
condition. The network of veins is considered to have the same structure as the network of arter-
ies with doubled diameters and 20%-lowered ck. To close the system, we add the mass conser-
vation condition and second-order compatibility conditions of hyperbolic set (1),(2) (see [11]).

Myocardial compression during systolic phase is the essential part of coronary haemody-
namics. The majority of perfusion occurs during the heart diastole [13]. Wall-state equation
(3) is modified by setting p∗ = P cor

ext (t). The shape of the function P cor
ext (t) is presented in [6]

and it is similar to the pressure in the ventricle. The amplitude of P cor
ext is 120 mmHg and 30

mmHg for terminal vessels of left and right coronary artery, respectively. Increased resistance
of micro-circulation region during systole is simulated by multiplying Rk in (6) for all coronary
vessels by the factor of 3 [14].

FFR is calculated as the ratio of average pressure in coronary artery distal to stenosis (P dist)
to average aortic pressure (P aortic, aorta is vessel 1 in Fig. 1) during vasodilator administration:

FFR =
P dist

P aortic

. (7)

Vasodilator administration is simulated by doubling S0 in the studied vessel and decreasing
resistanceR by the factor of 5. This method provided good agreement with experimental results
according to [6].

2.2 Compatibility conditions

Hyperbolic equations (1), (2) can be solved by different numerical methods. In this work
we use the second-order grid-characteristic method [15]. The method requires the second-order
approximation of compatibility conditions. A brief derivation of the second-order compatibility
conditions is presented here. For more information we refer to [11].

Compatibility conditions of the hyperbolic set (1), (2) can be derived from characteristic
form of (1) and (2):

ωki · (∂Vk/∂t+ ∂Fk/∂x) = ωki · (∂Vk/∂t+ λki∂Vk/∂x) = ωki · gk, i = 1, 2 (8)

where λki are the eigenvalues of the Jacobi matrix Ak = ∂Fk/∂Vk; ωki are the eigenvectors of
Ak; Vk = (Ak, uk)

T ; Fk = (Akuk, u
2
k/2 + pk/ρ)

T ; gk = (0, ffr)
T .
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After the finite differences discretization we can find linear dependence between the linear
velocity uk(tn+1, x̃k) and the cross section area Ak(tn+1, x̃k) at the time step tn+1 at the end or
at the beginning of every vessel composing a junction node

uk(tn+1, x̃k) = αkAk(tn+1, x̃k) + βk. (9)

For each vessel we use an uniform 1D mesh composed of J edges:

M = {(xj, tn) : xj = hj, j = 0, J ; tn =
n∑
p=1

τp}

where h is the mesh size; τp is the p-th time step; L is the length of the vessel. For the beginning
of the vessel outgoing from the junction node we use the second-order approximation of spatial
derivative at time step tn+1. Approximation of equation (8) (i = 1) is written at the point
(0, tn+1) as follows: (

∂V

∂x

)
0,tn

≈ −3V
n+1
0 + 4Vn+1

1 −Vn+1
2

2h
,(

∂V

∂t

)
0,tn

≈ Vn+1
0 −Vn

0

τn+1
,

(ωi)0,tn+1
≈ (ωi)

n
0 , (λi)0,tn+1

≈ (λi)
n
0 .

Denoting wn0 =
(√

1
ρA

(
∂p
∂A

))n
0
, Wn

0 = {wn0 , (−1)i}, σn0 =
τn+1

h
(λi)

n
0 we obtain:

Wn
0 ·
(
Vn+1

0 )−Vn
0

τn+1
+ (λi)

n
0

−3Vn+1
0 + 4Vn+1

1 −Vn+1
2

2h

)
= Wn

0 · gn+1
0 .

After substitution σn0 =
τn+1

h
(λi)

n
0 and taking the dot-product

wn0 [S
n+1
0 − Sn0 + σn0 (−

3

2
Sn+1
0 + 2Sn+1

1 − 1

2
Sn+1
2 )]−

−[un+1
0 − un0 + σn0 (−

3

2
un+1
0 + 2un+1

1 − 1

2
un+1
2 )] = τn+1(wn0φ

n+1
0 − ψn+1

0 )

we find α and β from (9) at x0

α = wn0 , β = [wn0 (σ
n
0 (2S

n+1
1 − 1

2
Sn+1
2 )− Sn0 )−

− (σn0 (2u
n+1
1 − 1

2
un+1
2 )− un0 )− τn+1(wn0φ

n+1
0 − ψn+1

0 )]/(1− 3

2
σn0 ).

(10)

In the similar way we derive α and β from (9) at xJ :

α = −wnJ , β = [−wnJ(σnJ (
1

2
Sn+1
J−2 − 2Sn+1

J−1)− S
n
J )−

− (σnJ (
1

2
un+1
J−2 − 2un+1

J−1)− u
n
J) + τn+1(wnJφ

n+1
J + ψn+1

J )]/(1 +
3

2
σnJ ).

(11)
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Figure 1: The structure of reconstructed arterial part of anonymous patient-specific data set. Stars designate
stenoses. Parameters of the vessels are presented in Tab. 1. LCA is the left main coronary artery, LAD is the left
anterior descending artery, RCA is the right main coronary artery

k lk, cm dk,mm ck,
cm
s

Rk,
ba·s
cm3 k lk, cm dk,mm ck,

cm
s

Rk,
ba·s
cm3

1 5.28 21.7 1050 20 10 0.59 3.6 950 720
2 60.0 25.1 840 20 11 6.1 3.0 950 720
3 2.72 3.1 1200 7200 12 2.05 1.17 950 720
4 1.44 1.31 1200 7200 13 1.75 1.21 950 720
5 1.40 2.73 1200 7200 14 1.39 3.8 950 720
6 6.75 1.52 1200 7200 15 12.1 2.05 950 720
7 5.01 2.50 1200 7200 16 5.4 1.91 950 720
8 1.27 1.19 1200 7200 17 0.38 1.01 950 720
9 5.65 0.157 1200 7200 18 2.62 1.19 950 720

Table 1: Parameters of the arterial tree: k is the index of the vessel according to Figure 1, lk is the length, dk is
the diameter, ck is the stiffness (3), Rk is the resistance (6). Veins are considered to have the same structure with
ck lowered by 20 %, dk doubled.

2.3 Patient specific 1D coronary network

The 1D vascular network was generated on the basis of patient-specific data. Geometry of
coronary vessels was extracted from CT scans with the help of image processing and segmen-
tation algorithms described in [7]. The network is presented in Fig. 1.

In this work two consecutive stenoses are evaluated. The stenosis in LCA is one third of
the vessel’s length, the stenosis in LAD is a half of the vessel’s length. Note that the patient
had other stenoses which were removed from the model in order to investigate the interaction
of two consecutive stenoses. Each stenosis was modelled by separating the hosting vessel into
three parts: the stenosed part, the proximal part and the distal part [6]. The parameters of the
proximal and distal parts correspond to the parameters of the hosting non-stenosed vessel. The
parameters of the stenosed part were modified: A0stenosed

= (1− γ)2A0, Rstenosed =
Lsten

L(1−γ)4R,
where γ is the stenosis fraction (degree of stenosis), R is the resistance of the hosting vessel, L
is the length of the hosting vessel, Lsten is the length of the stenosed part of the vessel.
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3 Results

Three series of simulations were performed for three degrees of stenosis in LCA: no stenosis
0%; slight stenosis 25%; severe stenosis 90%. In each series FFR in LAD was calculated,
results are shown in Fig. 2. FFR in LCA was also calculated and turned to be independent of
the degree of stenosis in LAD. In addition, we computed FFR in LCA for the following degrees
of LCA stenosis: 0% gives FFR=0.96, 25% results in FFR=0.88, 90% results in FFR=0.5.

Figure 2: FFR in LAD for various stenosis degrees in LCA.

According to Fig. 2, FFR sensitivity to the degree of the distal stenosis depends on the
degree of proximal stenosis. In the case of severe stenosis in LCA, the estimated FFR in LAD
is independent of LAD degree of stenosis.

4 Conclusions

The results allow us to make a few conclusions. Firstly, longer lesions (LAD on Fig. 1) have
significant impact on haemodynamics even when the degree of the stenosis is low. Secondly,
the proximal stenosis has significant impact on FFR of the distal stenosis. The severe proximal
stenosis nullifies blood flow to coronary arteries. As a result, lumen of distal arteries has little
effect on haemodynamics: it can be very small and still be wide enough for a small amount of
blood to flow through. This can be seen in Fig. 1 when the stenosis in LCA is 90%: FFR in
LAD is constant since the distal stenosis does not affect the blood flow distribution. Therefore,
FFR measurements for distal stenoses in presence of severe proximal lesion can be deceiving
and do not allow to assess their impact on haemodynamics.

It should be noted that our method of virtual FFR estimation does not provide FFR=1.0
in case of 0% stenosis. The reason is boundary conditions (6) at the junction nodes that imply
pressure drops in bifurcations. In order to achieve FFR=1.0 for healthy vessels, these conditions
should be modified.

Cases with multiple stenoses are very hard to analyze without simulations. The presented
method can be used for analysis of complicated cases with 3 or more lesions. The method
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allows to study possible outcomes and choose the most cost efficient strategy of treatment of
multiple stenoses.
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