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This work is aimed at computational study of blood �ow in lower extremities

under intensive physical load. We present a modi�ed 1D cardiovascular system model

describing skeletal-muscle pumping and autoregulation e�ects to the blood �ow in lower

extremities. Skeletal-muscle pump e�ect is introduced as an external time-periodical

pressure function applied to a group of the veins. Period of this function is associated

with the two strides period during running. Computational study reveals explicit optimal

stride frequency providing maximum blood �ow through the lower extremities. It is

shown that optimal stride frequency depends on the personal parameters. The model

is validated by comparison to the stride frequencies of a number of top level athletes

therefore providing a method to assess the level of physical conditioning.

1 Introduction

The state of the art of modern cardiovascular system simulations includes 1D �ow modeling
in the network of elastic tubes [3, 6, 8, 15, 16] that is in some cases extended by 3D models
for local regions resulting in �uid-structure interaction problem [6] and multidimensional 1D-
3D coupling [5, 6]. The most works in this �eld consider normal or quiet state of the organism.
The deeper look to the cardiovascular system simulation should include physiological reactions
of the vessels wall [3, 9] and their interaction with surrounding tissues that is especially
important for physical activity simulations.

This work is focused on mathematical model of cardiovascular system capable to simulate
blood �ow during physical load. We use 1D network dynamical model of global circulation
[8, 16] taking only systemic circulation. This model is extended with the models of vascular
autoregulation and skeletal-muscle pump including venous valves. Along with general pressure
and velocity pro�le adjustments we validate this model by comparison of its response to
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the laboratory observations for the cases of gravitational and occlusion sampling tests and
changing body's orientation in gravitational �eld.

We limited our discussion by periodic activity associated with low extremities muscles
working. That is also can be associated with short-distance running. Mean blood �ow
in anterior tibial vein is mainly observed as a measure of low extremities muscles blood
supply. Presented simulations reveal dependence of average blood �ow and stride frequency
during walking and running. As a result we observe particular value of stride frequency
providing maximum average blood �ow in anterior tibial vein that is associated with optimal
stride frequency. This value is calculated and compared for several top level athletes. Good
coincidence allows us to conclude that it could be a measure of sportsman e�ectiveness.

2 Methods

2.1 Systemic circulation

As a core model for blood circulation we used 1D network dynamical model [8, 16] taking
into account systemic arteries and veins. The model is based on the model of viscous
incompressible �uid �ow through the network of elastic tubes. The �ow in every vessel
is described in terms of mass and momentum balance

∂Sk/∂t+ ∂(Skuk) /∂x = 0, (2.1)

∂uk/∂t+ ∂
(
u2k/2 + pk/ρ

)
/∂x = ffr

(
Sk, uk, S

0
k

)
+ g sin θk, (2.2)

where k is an index of the vessel; t is time; x is distance along the vessel counted from the
vessel's junction point; ρ is blood density (constant); Sk(t, x) is vessels's cross-section area;
pk is blood pressure; S0

k is unstressed cross-sectional area; uk(t, x) is linear velocity averaged
over the cross-section; g is a gravity constant; θk is an angle between the vessel and gravity
�eld; ftr is a friction force given by

ftr
(
Sk, uk, S

0
k

)
= −4πµuk

S2
k

(
Sk
S0
k

+
S0
k

Sk

)
(2.3)

where µ is blood viscosity.
In the statement of boundary conditions it must be taken into account that equations (2.1)

and (2.2) are of a hyperbolic type. Boundary conditions for this type of equations shall be set,
allowing for the behavior of characteristic curves on the border of the integration domain.
Namely, at any moment of time within the period considered, the number of boundary
conditions at each point of the boundary must correspond to the number of characteristic
curves going out of the region at this point. Simultaneously, the conditions imposed by the
equations of characteristic curves entering the domain (compatibility conditions) must be
included. Therefore, it is essential to determine the behavior of the characteristic curves of
equations (2.1) and (2.2). Denoting

Vk = {Sk, uk}, Fk = {Skuk, u2k/2 + pk/ρ}, gk = {φk, ψk}
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we write equations (2.1) and (2.2) in a divergence form:

∂Vk/∂t+ ∂Fk/∂x = gk.

Then, by the scalar multiplication by the left eigenvectors ωki (i = 1, 2) of the Jacobi matrix
Ak = ∂Fk/∂Vk we obtain the characteristic form of (2.1) and (2.2)

ωki · (∂Vk/∂t+ ∂Fk/∂x) = ωki · (∂Vk/∂t+ λki∂Vk/∂x) = ωki · gk, i = 1, 2 (2.4)

where λki are the eigenvalues of the matrix Ak.
The speci�c expression for Ak, by de�nition

Ak = ∂Fk/∂Vk =

 uk Sk
1
ρ

∂pk
∂Sk

uk

 .

Eigenvalues λki can be found from

det(Ak − λkE) = 0, E =

(
1 0
0 1

)
,

the solution of this equation is given by

λki = uk + (−1)i

√
Sk
ρ

∂pk
∂Sk

, i = 1, 2. (2.5)

Left eigenvectors ωki are determined from equatios (except for constan factor)

ωki(Ak − λkiE) = 0, i = 1, 2

and it is possible to choose, for example

ωki =

{√
1

ρ

∂pk
∂Sk

, (−1)i

}
, i = 1, 2. (2.6)

The value

√
Sk
ρ

∂pk
∂Sk

from (2.5) is the velocity of small disturbances. In all parts of the

cardiovascular system during the normal functioning and in cases of most pathologies velocity
of small disturbances is bigger than blood �ow velocity uk. For such �ows, as follows from
(2.5), in each point of the considered domain at any moment of time, one of the characteristic
curves has a positive slope and the other has a negative slope. In the statement of boundary
conditions, therefore, only one condition should be set at the inlet and outlet of the elastic
tube.

At the entry point of the vessel connected to the heart the blood �ow is assigned as the
boundary condition

u(t, 0)S(t, 0) = QH (t) . (2.7)
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At the terminal point of the venous system (x = xH) the pressure is set as the boundary
condition

pH(t, xH) = pH . (2.8)

At the vessels junctions the Poiseulle's pressure drop condition and the mass conservation
condition are stated

pk (Sk (t, x̃k))− plnode (t) = εkR
l
kSk (t, x̃k)uk (t, x̃k) , k = k1, k2, . . . , kM , (2.9)∑

k=k1,k2,...,kM

εkQk (t, x̃k) = 0, (2.10)

where M is number of the connected vessels, {k1, . . . , kM} is range of the indices of the
connected vessels, pnode(t) is pressure at the junction point, ε = 1, x̃k = 0 for incoming
vessels, ε = −1, x̃k = Lk for outgoing vessels.

Every boundary condition (2.7)�(2.10) is extended with compatibility condition of the
hyperbolic set (2.1), (2.2). After �nite di�erences discretization it provides linear dependence
between linear velocity uk(tn+1, x̃k) and cross section area Sk(tn+1, x̃k) at the upper time layer
at the end or at the beginning of every vessel composing a node

uk(tn+1, x̃k) = αkSk(tn+1, x̃k) + βk. (2.11)

The nonlinear set (2.9)�(2.11) of 2M +1 equations can be reduced to the set ofM equations
[4] and can be e�ectively solved by Newton method.

Coe�cients α and β for (2.11) can be derived using �nite di�erences discretization of
(2.4) (index k is suppressed but implicitly assumed until the end of this section). For each
vessel we use uniform 1D mesh

M = {(xj, tn) : xj = hj, hJ = L, j = 0, J ; tn =
n∑
p=1

τp}

where h is spatial step, τp is a p-th time step. For the beginning of the vessel outgoing
from the node we looking for V (0, tn+1) taking V (0, tn) from the previous time step and
V (x1, tn+1) from the internal points explicit computational algorithm [4]. Taking(

∂V

∂x

)
0,tn+1

≈ V(x1, tn+1)−V(0, tn+1)

h
,

(
∂V

∂t

)
0,tn+1

≈ V(0, tn+1)−V(0, tn)

τn+1

,

(ωi)0,tn+1
≈ (ωi)0,tn , (λi)0,tn+1

≈ (λi)0,tn ,

and denoting w =

√
1

ρ

(
∂p

∂S

)
0,tn

,W = {w, (−1)i}, σ =
τn+1

h
(λi)0,tn we can discretize (2.4)

for the inlet (i = 1) as

W ·
(
V(0, tn+1)−V(0, tn)

τn+1

+ (λi)0,tn
V(x1, tn+1)−V(0, tn+1)

h

)
= W · g. (2.12)
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That can be rewritten in the form (2.11) taking

α = w,β =
w(σS(x1, tn+1)− S(0, tn)) + u(0, tn)− σu(x1, tn+1)− τn+1(wφ− ψ)

1− σ
.

The same method applied to the outlet conditions results in

α = −w,β =
w(σS(xJ−1, tn+1) + S(xJ , tn)) + u(xJ , tn) + σu(xJ−1, tn+1) + τ(wφ+ ψ)

1 + σ
.

2.2 Wall-state equation

Elastic properties of the vessel wall material are described by the wall-state equation providing
response to the transmural pressure (the di�erence between blood pressure and pressure in
the tissues surrounding the vessel)

pk(Sk)− p∗k = ρc2kf(Sk) , (2.13)

where S-like function f(S) is approximated as

f(Sk) =

{
exp (Sk/S

0
k − 1)− 1, Sk > S0

k

ln (Sk/S
0
k), Sk 6 S0

k

, (2.14)

p∗k is pressure in the tissues surrounding the vessel, ck is small disturbances propagation
velocity of the wall material in the relaxed state(Sk = S0

k) which can be interpreted as pulse
wave velocity (PWV) in the unstressed vessel [19].

As is shown in section 3 the purely mechanical model presented in this section fails to
describe correctly some of the features related to the transient states, e.g. changing body
orientation in gravity �eld, vessels occlusion and others. Real vascular networks include
regulatory and venous blood return mechanisms (muscle pump, venous valves, respiratory
pump and others [14]) that can substantially a�ect pressure and velocity pro�les. Some of
this e�ects are introduced in the following section.

2.3 Autoregulation

We consider blood �ow autoregulation as response of the arteries wall elasticity to changes in
averaged blood parameters (such as mean pressure, mean blood �ow, oxygen concentration).
Laboratory study presented at Figure 1 reveals vessel's initial expanding (passive phase)
and subsequent gradual contraction (active phase) under induced blood pressure increase. It
results in maintaining constant mean blood �ow despite changes in pressure.

Autoregulation is a local e�ect occurred even in isolated blood vessels. According to [7]
there are many potentially important mechanism of autoregulation - myogenic, metabolic,
tissue pressure et. al. Each mechanism has its own experimental evidence. We use only
myogenic hypothesis in this work as it has straightforward mechanical interpretation and
probably plays the dominant role for intensive physical loads considered in this work.
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Ðèñ. 1: The e�ect of subsequent pressure steps on diameter of rat artery [1]

According to myogenic hypothesis vascular smooth muscle responds to the changes of the
mean pressure. The mean pressure increase results in the vascular smooth muscle contraction
which results in the vessel's sti�ness increase consequently providing higher pulse wave
velocity. The same is valid for the mean pressure decrease resulting in vascular smooth
muscle relaxation and decrease both the sti�ness and pulse wave velocity.

Vascular smooth muscle cells responded to the mean pressure changes are placed in tunica
media (the middle layer of a blood vessel wall). This layer is quite thick in arteries and
relatively thin in veins. As a result myogenic autoregulation in veins provides no substantial
impact to the blood �ow and we remove it from consideration.

These observations may be incorporated to our model as follows. Cross-section area
Sk and blood pressure pk are related by parameter ck. Supposing cross-section area to be
constant and applying (2.13) to it we will derive the following dimensionless time-independent
parameter

pk − p∗k
ρc2k

= f(Sk) = const. (2.15)

It requires computational algorithm modi�cation. Autoregulation is not an instant process.
To avoid signi�cant changes in vessels properties during a single heart period we should take
an average of (2.15) over time. Assuming p∗k = 0 in arteries and ρ = const

pk
c2k

= const. (2.16)

Taking average pressure during two subsequent averaging periods T1, T2 throughout the
vessel k we can recalculate new value ck for the next period T3 and so on

ck,new
ck,old

=

√
pk2
pk1

, (2.17)
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where p̄kj is average transmural pressure for the averaging period Tj. The smallest averaging
period should be greater or equal to the heart period as mean pressure may substantially
change during smaller periods. We use 4 seconds for all averaging periods as it provides
more stable solution in our numerical experiments. This value is substantially smaller than
characteristic time of the simulations that is 100 � 200 seconds.

2.4 Skeletal-muscle pump

In this work we consider physical load speci�c for running. It is characterized by periodic
activity of the muscles of the low extremities. Due to anatomical feature skeletal-muscle
pump does not a�ect large arteries [14] and we remove them from the further consideration.
Assuming the force compressing the vein to be directed perpendicularly to its axis allows to
relate muscle pumping with external pressure p∗k in (2.13). Maximum value of this pressure
may be derived if we consider muscle as a cylinder holding the weight of a human body
which gives us [11]

p∗k =
mg

S

σ

1− σ
(2.18)

where m is a mass of the body; S is muscle average cross-section; σ is muscle's Poisson ratio.
Taking for a trained athlete m = 60kg, σ = 0.49 and S = 600cm2 we evaluate p∗k as 10kPa.

We consider running as periodical processes with period T . This period is equal to the
time needed for two complete strides. Thus the stride frequency is

ν =
2

T
. (2.19)

As a result muscle-pumping pressure can be given by

p∗k =
Pmax

2

(
1 + sin

(
2πt

T
+ Φ

))
(2.20)

where Pmax = 10kPa, Φ�phase (Φl = 0 for the left leg and Φr = π
2
for the right).

Additional feature of the major leg's veins substantial for the muscle-pumping is the
valves functioning preventing the backward blood �ow [14]. The mechanism of the valves
functioning is shown on Figure 2 .

We propose to simulate this feature by modifying friction force (2.3) as

Ffr =

{
ffr(s, u) , u > 0

A, u < 0
(2.21)

where ffr(s, u) is a friction force used in general non-valved vessel (2.3), A� ffr (in this work
A = 100ffr) is a virtual force used to prevent the backward �ow. It of course di�ers from the
actual venous valves functioning. Here we implicitly assume instant venous valves activation
immediately after the linear velocity comes below zero. For the real case small time-lag is
observed and some relatively small negative value of the linear velocity may achieved. We
neglect this kinetic energy losses especially within the scope of short time simulations carried
in this work.
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Ðèñ. 2: Venous valves.

2.5 Integration domain and model identi�cation

We suppose that the networks of the arteries and veins have the same structure. Corresponding
vessels have the same length (Lartk = Lvenk ), diameters of the corresponding veins two times
greater than that for the arteries (dartk = 2dvenk ). The total network of systemic circulation
is composed by joining arterial and venous network by virtual vessels having averaged
properties corresponding to the peripheral circulation. Parameters of these terminal vessels
were speci�ed so as they contain about 20% of the total blood volume and provide adequate
pressure and blood velocity di�erence between arteries and veins according to [14]. General
scheme of the network is shown at Figure 3. Structural and functional parameters of the
network were speci�ed according to the available data [14, 17, 15]. More detailed description
on the methods of integration domain and model identi�cation can be found in [8, 16].

Speci�c case considered in this work relates to the cardiovascular simulation under
intensive physical load. This is generally applicable to the sportsmen and other specially
trained persons. We use PWV index to specify vessel's wall elasticity more adequate as
trained athletes are characterized by increased elasticity and consequently lower PWV values
[12, 13]. The vascular network was also �tted by the body's height by appropriate scaling of
the vessel's lengths.

3 Results

Developed model was identi�ed, tested and validated by di�erent methods described in
[8, 16]. Most similar related works provide pressure, linear velocity or blood �ow pro�le
adjustment to some laboratory or generally known in physiology data. This of course con�rms
the models. For the case of physical activity simulations when autoregulation plays important
role it is also important to adjust the model response to some static and dynamical disturbances.
In the beginning of this section we validate our model by comparison of its response to
the laboratory observations for the cases of gravitational and occlusion sampling tests and
changing body's orientation in gravitational �eld. The rest of the section presents results of
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Ðèñ. 3: The scheme of arterial and venous vessel networks.

the computational study of blood �ow in lower extremities under intensive physical load.

3.1 Model validation

The scheme of the gravitational sampling is presented at Figure 4. Arterial volume distensibility
was experimentally measured in [20] from the electrocardiogram and �nger and ear photoplethysmograms
records from 15 subjects with the right arm at �ve di�erent positions (90°, 45°, 0°, −45°and
−90°degrees referred to the horizontal level). By de�nition, arterial volume distensibility
Dv gives relative blood volume change in selected vascular region with a known change in
arterial pressure

Dv =
1

∆P

∆V

V

According to [20] it can be rewritten as

Dv =
1

ρa2
(3.1)

where a is a pulse wave velocity. (3.1) is used for validation of the model presented in this
work.

Experimental series described in [20] were simulated by our model. Results of numerical
simulations are presented on Figure 5 along with the data from [20]. It allows to conclude
that they are in quite good qualitative and even quantitative agreement.
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Ðèñ. 4: The scheme of the experiment [20].

Ðèñ. 5: Relationship between mean arterial pressure and arterial volume distensibility
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Ðèñ. 6: A and B � PAT signals (measured from a �nger) during cu� occlusion [10]. for
healthy and diseased subjects. C and D � numerically calculated pressure in a �nger during
occlusion with and without autoregulation.

Occlusion sampling test is described in [10]. It involves measuring Peripheral Arterial
Tone (PAT) signal from a �nger during brachial artery occlusion. Healthy subjects show
increased PAT signal during recovery which corresponds to the average blood pressure
increase in peripheral arteries while unhealthy subjects with inadequate autoregulation show
blunted response. The results of numerical simulation of this test are shown on Figure 6.
We only mention qualitative coincidence here as available analog PAT signal is not directly
recalculated to pressure. In most cases higher average pressure leads to the higher arterial
tone and PAT amplitude but it can be invalid for some speci�c cases, such as obstructive
sleep apnea [18].

Next dynamical test of our model is based on the simulation of the body orientation in
gravitational �eld. It is known that body position chnage from horizontal to vertical causes
the blood pressure increase e.g. in anterior tibial artery. Cross-section initially increases
and then returns towards normal level due to autoregulation e�ect. In this simulation we
consider vascular network to be at rest for the �rst 80 seconds. After that gravitational
impact is activated by the right part of (2.2). We assume it corresponding to change in body
position from horizontal to vertical. Calculated anterior tibial artery cross-sections with the
time are depicted at Figure 7. Qualitatively the model's behavior corresponds to the loaded
rat arteries behavior [1] presented at Figure 1.

Figure 7 shows that the model with autoregulation is capable to provide correct response
to some external disturbances such as body position change. After standing up leg arteries
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Ðèñ. 7: The e�ect of changing body position on cross-section of anterior tibial artery without
(A) and with (B) autoregulation.

contracted to neutralize blood pressure increase in lower extremities. Excessive blood pressure
in the lower body could lead to increased load on venous valves resulting in their malfunctioning.
This in turn is the reason for such vascular decease as varicose veins etc. The other important
physiological reason for maintaining blood pressure in the lower body at the same level as
before standing is to neutralize sudden pressure drop in brain. Sudden pressure drop in upper
body could be the reason for orthostatic hypotension [2] such as dizziness, blurred or dimmed
vision or even faint. It is especially important for adults commonly experiencing regulatory
mechanisms malfunctions.

3.2 Skeletal-muscle pump

Developed model allows us to simulate blood �ow in the legs during intensive exercise
taking into account speci�c vessels elasticity of the trained athletes and their height. In
each simulation we consider the vascular network to be at rest for the �rst 90 seconds to
assure pseudo steady pulsate state maintained all over the network. After that an external
pressure (2.20) is applied to the leg veins for the next 70 seconds. Mainly anterior tibial vein
(Figure 3) was observed. The blood �ow was averaged over the 4 cardiac cycles. The results
of the �rst series include simulations of the mean blood �ow in tibial vein for di�erent stride
frequencies (Figure 8). From Figure 8 one can observe an increase of the blood �ow along
with the stride frequency increase until some optimal value is achieved. The further increase
of the stride frequency results in the blood �ow decrease. We address to this value as to
the optimal stride frequency as it provides maximum blood supply consequently resulting in
maximum muscles oxygen supply due to convective transport by blood.

The next computational series showed that optimal stride frequency depends on the total
length of the vessels' network and elastic properties of the vessels' walls and does not depend
on boundary caonditions on heart. In the simulations presented in this work elastic properties
were set according to PWV data for trained athletes [12, 13]. Figure 8 demonstrates stride
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Ðèñ. 8: Stride frequency for the networks �tted to the body's height of 175 cm and 195 cm.

A B C D
Height, cm 195 175 183 124

Stride frequency, str/sec 4.27± 0.05 4.7± 0.1 4.54± 0.02 6.40± 0.05

Òàáëèöà 1: Actual parameters of the athletes. A, B, C, D notations are presented in the text

frequency dependence from the body's height. In this simulations vessels lengths were �tted
to the height by linear scaling

Lk2 =
H2

H1

Lk1, (3.2)

where H1,2 is height of the body in two simulations, Lk1,2 is length of the k-th vessel in two
simulations.

More detailed computational analysis is presented on Figure 9. Optimal stride frequency
is simulated for several selected heights. It is compared to several well-known results in the
recent world level competitions. We selected gold (A) and bronze (B) medal winners in 100
meters sprint in Beijing 2008 Olympiad, bronze medal winner in 100 meters sprint in London
2012 Olympiad (C) and gold medal winner in 100 meters sprint in World Dwarf Games 2008
(D). Actual sportsmen stride frequency and height was measured from the free online video
available in the World Wide Web. These parameters are summarized in the Table 1.

From Figure 9 one can observe quite good agreement between simulated and actual
optimal stride frequencies in the wide range of the heights. We should mention that the
model used for these simulations provides rather qualitative than quantitative description.
It includes some physiological e�ects such as muscular pumping with venous valves and
myogenic autoregulation mechanism. But many other important e�ects such as metabolic and
tissue pressure autoregulation mechanisms, other regulatory systems, heart rate variability,
oxygen transport, respiratory system, energy production and supply by the organism and
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Ðèñ. 9: Optimal stride frequency for trained athletes.

others are not included. Nevertheless computed values are very close to the actual data
(Figure 9). It provides evidence for valid blood �ow simulating under intensive physical load
within the proposed approach. The further simulations are needed to validate this model
which should include more di�erent athletes specializing in long-distance running as well.

4 Discussion

It should be pointed out that presented numerical experiments on computing optimal stride
frequency consider blood �ow optimization for sprinters. But the period of 70 seconds selected
for calculating optimal stride frequency is far beyond the actual time needed to �nish 100
meters distance which is less than 10 seconds. The model application is also limited by the
fact that 4 seconds period is selected for averaging mean blood pressure for the next stage
controlled by autoregulation response of again 4 seconds. It also should be mentioned that
blood supply plays minor role for short-distance runners as major energy is anaerobically
produced by tissues. So if sprint is considered there is no direct analogy with real competition
even if actual parameters are set for simulations. In addition computational domain structure
used in this work is quite far from the real vascular network as only major arteries and veins
included and only systemic circulation is considered.

Inlet and outlet boundary conditions (2.7)�(2.8) to the vascular network corresponding to
the heart junctions can't guarantee mass conservation in the system in general. Nevertheless
a wide range of the previously performed simulations revealed good quantitative coincidence
in the quiet state of the system [4, 8, 16]. In the case of the intensive physical load such
approach produces more error. Along with the other assumptions such as constant heart
rate and absence of the barore�ex regulation it will be one of the central questions of the
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future work. We just used this simpli�ed approach for very limited time domain (less than 70
seconds). Thus the model sensibility to these e�ects is negligible. We also conclude that the
�ow maximum at optimal stride frequency is mostly related to the local elastic properties of
the region of the lower extremities.

We can assume that professional sprinters have stride frequencies that are very close to
the optimal ones. It might be due to a natural born talent or years of hard work. It is possible
to adjust vessels' elastic properties via combining endurance- and strength-based exercises.
It looks like elite sprinters trained their circulatory system (involuntarily) in a way that their
optimal frequency and stride frequency are very close.

Nevertheless it seems that optimal stride frequency computed by our method strongly
correlates with observations. It seems to be a possible measure of sportsman e�ectiveness
as far as ordinary organism simulations provide greater deviations from this value. Such
simulations can't be presented in systemic way due to substantial variability for not trained
persons. Moreover it may provide more realistic criterion if other sport events with periodical
physical load and longer time periods would be considered. This is a starting point for further
development of this work.

This work was partially supported by the grants RFBR 11-01-00855-a, 11-01-00971 and MK 2719.2012.9.
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