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Introduction

We develop and present methods and algorithms for patient-specific
image segmentation and generation of discrete geometric models for
several medical applications. We consider two types of modelling ap-
plications: applications requiring individualized regional network of
blood vessels, e.g. haemodynamics modelling; and applications re-
quiring the full torso tissues structure, e.g. bioimpedence analysis or
electrocardiography (ECG) modelling.

Vascular network reconstruction consists of several stages (Fig. 1).
We focus on coronary and cerebral arteries segmentation.
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Figure 1: Admissible flowcharts of vascular network reconstruction algorithms.

Coronary arteries segmentation

Contrast enhanced Computed Tomography Angiography (ceCTA) DICOM
images are used as input data. Our automatic vessel segmentation method-
ology for coronary arteries was proposed in [1]. Essential steps of this
method consist of aorta segmentation (Fig. 2), computation of vesselness
values, searching branches of aorta arch or ostia points, and removing seg-
mentation errors near aorta boundary.

We employ the Isoperimetric Distance Trees (IDT) [2] algorithm for
aorta segmentation. It starts from the maskMinit and a voxel c, it cuts the
mask Minit through bottlenecks and outputs submask MA containing c.
The Circle Hough Transform [3] is used to detect an aorta cross-section –
the largest bright disk D and its radius RA on transverse planes (Fig. 2a).
Initial mask is acquired by thresholding method with a minimal intensity
inside of the disk tinit as a threshold parameter (Fig. 2b). The center of
the disk is considered as the initial voxel c.

After the IDT stage, some parts of coronary arteries may still be
included in MA (Fig. 2c). We define mask smoothing with parameter p
as successive deletion of p voxels thick border from the mask (p-border)
and addition of p-border. High smoothing parameter values result in mask
distortion. In the coronary case a simple morphological smoothing of MA
with small parameter is sufficient in order to remove coronary parts and
to keep the mask intact (Fig. 2d-e).

Figure 2: Flowchart for automatic segmentation of aorta.

The next step is computation of Frangi Vesselness [4], which results in
bigger values inside bright tubular structures. Segmentation of arteries is
produced by thresholding of vesselness values. Then coronary arteries and
cerebral aorta arch branches are found as voxel connectivity components
near the aorta boundary.

Cerebral arteries segmentation
Bone elimination is an essential step for cerebral artery segmentation due
to vertebral arteries and cervical vertebrae proximity. Assuming both CT
and ceCTA datasets (Fig. 3a-b) are available for the same patient, bones
can be automatically darkened with the multiscale matched mask bone
elimination algorithm [5] (Fig. 3c). Aortic arch branches are defined as
connected components of voxels with high vesselness, lying close to aorta
border (Fig. 3d-f). Aorta border cleaning is the final step, which is neces-
sary since high vesselness values may falsely occur near big bright struc-
tures (Fig. 3g).

Figure 3: Flowchart for automatic segmentation of cerebral arteries.

We assume the mask MV represents the vessels, and the mask
MA represents only the aorta. We define the voxel layer Ld = {v ∈
MV | dist(MA, v) = d} as a subset of maskMV distanced from the mask
MA by the distance d. For each voxel layer Ld for d = dmax, . . . , 0 we
apply the following procedure: remove all voxels from Ld that have no
adjacent voxels in Ld+1. The parameter dmax should be big enough, so
that voxel layer Ldmax contains no segmentation errors.
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Figure 4: Flowchart for automatic reconstruction of coronary arteries 1D network.

Vascular network reconstruction
We adopt the Distance-Ordered Homotopic Thinning proposed by C. Pud-
ney [6] for skeletonization. The algorithm starts with a binary image and
outputs the topologically equivalent skeleton centered with respect to the
shape of the image. The centredness of the skeleton is determined by the
order of voxel elimination from the image. Following [6], we use a chamfer
distance transform approximating Euclidean distance.

During the thinning process the voxels are sorted by distance values
in ascending order and are deleted in groups with the equal values. A
voxel is deletable if it is simple and not the end of a medial axis (i.e. it
is adjacent to one and only one voxel). In practice this approach leads to
a skeleton with several false twigs, usually near bifurcations and flattened
vessels, which do not correspond to any actual vessel. False twigs are
attributed to superfluous topology features caused by initial image noises
and irregularities of vessel shape. We apply a post-processing stage to
eliminate false twigs: all segments with length smaller than the local vessel
radius are eliminated (Fig. 4).

Results of automatic segmentation, skeletonization, and network
reconstruction for two coronary datasets (CD1, CD2), two cerebral
datasets (ND1, ND2), and a vascular corrosion cast of rabbit kidney (RK)
are presented in Figs. 5–7. CPU times of specific segmentation and skele-
tonization stages are presented in Tables 1–3.

Experiment with RK dataset shows good efficiency and robustness of
the skeletonization algorithm.

Figure 5: Segmentation and skeletonization for coronary datasets CD1 (left), CD2 (right).

Table 1: Dataset resolution and CPU time of coronary segmentation stages.

Dataset CD1 CD2
Resolution 512× 512× 248 512× 512× 211
Spacing 0.37× 0.37× 0.40 mm 0.46× 0.46× 0.48 mm

Aorta segmentation 5.80 s 5.19 s
Frangi filter 91.76 s 73.94 s

Figure 6: Reconstruction of rabbit kidney vascular network (RK). µCT DICOM data
provided by J. Alastruey [7, 8].

Table 2: CPU time of skeletonization and graph reconstruction stages.

Dataset CD1 RK
Resolution 512× 512× 248 2000× 1989× 910

Distance map 0.20 s 58.12 s
Thinning 0.79 s 526.98 s

False twigs elimination 0.15 s 16.61 s
Graph construction 0.13 s 12.27 s
Skeletal segments 22 4302

False twigs 6 2142

Figure 7: Cerebral arteries segmentation for datasets ND1 (left) and ND2 (right).

Table 3: CPU times of cerebral arteries segmentation.

Dataset ND1 ND2
Resolution 512× 512× 501 512× 512× 451
Spacing 0.76× 0.76× 0.80 mm 0.62× 0.62× 0.80 mm

Pulmonary removal 7.76 s 7.04 s
Aorta segmentation 16.61 s 15.33 s
Frangi vesselness 196.40 s 184.91 s

Aortic arch branches 7.61 s 6.67 s
Aorta border cleaning 7.39 s 6.76 s

Adaptive mesh generation
Several techniques for soft tissue segmentation are used, including user-
guided active contour segmentation with supervised random forest classi-
fication and textural features computation [9, 10, 11].

An example of human heart segmentation is presented in Fig. 8. The
adaptive unstructured tetrahedral mesh was constructed using Delaunay
triangulation algorithm from CGAL Mesh library [12]. The maximum
mesh size is 3 mm, the minimum mesh size in the vicinity of heart bound-
aries and material interfaces is 1 mm. The computational mesh consists
of 367 318 tetrahedra and 77 953 vertices. Upscaling of multi-labeled seg-
mented image was used to improve the resolution of input data.

Figure 8: Unstructured mesh for human heart: translucent 3D model, triangular surface
mesh, and volume cut of the tetrahedral mesh.

Adaptive mesh size may be used to improve mesh resolution in the
region of interest while keeping the total number of mesh elements reason-
able. Fig. 9 demonstrates the results of forward ECG calculation using
adaptive unstructured mesh for Visible Human Project (VHP) data.

Figure 9: VHP male body mesh refined near heart ventricles and body surface electrical
potential calculated during ECG modelling.

Conclusion

The work addresses several segmentation techniques for generation of
individualized computational domains from medical imaging datasets.
We propose automatic algorithms for vascular network segmentation.
We present several examples of patient-specific segmentation and skele-
tonization. We discuss soft tissue segmentation and adaptive mesh
generation. The proposed algorithms are presented in details in our
works [1, 9, 10, 11].
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