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Introduction

Methods and algorithms for patient-specific image segmentation and
generation of discrete geometric models are presented for several car-
diovascular medical applications. Hemodynamics modeling applica-
tions require individualized 1D or 3D regional network of blood ves-
sels. Electrocardiography (ECG) modeling requires the segmentation
of heart tissues and in some cases other soft tissues in the chest or in
the whole body.

Vascular network segmentation

Contrast enhanced Computed Tomography Angiography (ceCTA) DICOM
images are used as input data. Our automatic vessel segmentation method-
ology for coronary and cerebral arteries was proposed in [1, 2, 3]. Essential
steps of this method (Fig. 1): aorta segmentation, computation of Frangi
vesselness values, searching branches of aortic arch and ostia points, re-
moving segmentation errors near aorta boundary, skeletonization and 1D
network reconstruction.
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Figure 1: Flowchart for automatic reconstruction of coronary arteries 1D network.

Bone elimination is an essential step for cerebral artery segmentation due to
vertebral arteries and cervical vertebrae proximity. The multiscale matched
mask bone elimination algorithm [4] may be used if both CT and ceCTA
datasets are available for the same patient. The isoperimetric distance
trees [5] algorithm is used for aorta segmentation. The next step is compu-
tation of Frangi vesselness [6], which results in bigger values inside bright
tubular structures. Vascular 1D computational network is reconstructed
using skeletonization [7].

Figure 2: Segmentation and skeletonization for coronary datasets CD1 (left), CD2 (right).

In practice a skeleton may have several false twigs, usually near bifurcations
and flattened vessels, which do not correspond to any actual vessel. Several
post-processing stages are used to clean falsely detected parts of vascular
network and improve segmentation quality.

Figure 3: Cerebral arteries segmentation for datasets ND1 (left) and ND2 (right).

Results of automatic segmentation, skeletonization, and network re-
construction for two coronary datasets (CD1, CD2) and two cerebral
datasets (ND1, ND2) are presented in Figs. 2–3. CPU times of specific
segmentation and skeletonization stages are presented in Table 1.

Table 1: Dataset resolution and CPU times of segmentation stages.

Dataset CD1 CD2
Resolution 512 × 512 × 248 512 × 512 × 211
Spacing 0.37 × 0.37 × 0.40 mm 0.46 × 0.46 × 0.48 mm

Aorta segmentation 5.80 s 5.19 s
Frangi filter 91.76 s 73.94 s
Dataset ND1 ND2
Resolution 512 × 512 × 501 512 × 512 × 451
Spacing 0.76 × 0.76 × 0.80 mm 0.62 × 0.62 × 0.80 mm

Pulmonary removal 7.76 s 7.04 s
Aorta segmentation 16.61 s 15.33 s
Frangi vesselness 196.40 s 184.91 s

Aortic arch branches 7.61 s 6.67 s
Aorta border cleaning 7.39 s 6.76 s
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Dynamic left ventricle segmentation
We developed the technology for generation of a dynamic mesh for heart
ventricles. The proposed pipeline was tested on the left ventricle using
anonymized dynamic chest ceCT dataset of 100 images with 512×512×480
voxels and 0.625 × 0.625 × 0.25 mm resolution. We manually segmented
several images: #0 – beginning of systole, #30 – end of systole, and
#50 – middle of rapid inflow during diastole. Levelset method from ITK-
SNAP package [8] was used for user-guided segmentation of four materi-
als: left ventricle, left atrium, aorta, and right ventricle and atrium com-
bined (Fig. 4-left).

Figure 4: Segmentation of ceCT images: manual segmentation of image #50 (left), au-
tomatic segmentation of image #80 (right). Segmentation colors: left ventricle (red),
left atrium (blue), aorta (green), right ventricle and atrium (yellow). Screenshots from
ITK-SNAP software.

We trained random forest classifier on the manually segmented images and
post-processed the result of classification using a combination of mathe-
matical operations: dilation, erosion, and construction of connected re-
gions (Fig. 4-right).

Please open the following video
https://youtu.be/R3yzxGxDDq8

Figure 5: Dynamic left ventricle model. The video contains following stages: initial ceCT
DICOM dataset, automatic segmentation, dynamic surface and volumes meshes, and
computed velocity field.

The initial unstructured tetrahedral mesh is constructed for image #0 and
then deformed by node movements for each subsequent image (Fig. 5).
Boundary nodes are moved first simultaneously propagating and smoothing
the surface mesh (Fig. 6-top). Internal nodes are shifted by simultaneous
untangling and smoothing algorithm [9] (Fig. 6-bottom).
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Figure 6: Surface (top row) and volume (bottom row) meshes of the left ventricle for
several ceCT images.

Final series of topologically invariant dynamic meshes for the left ventri-
cle based on the dynamic ceCT images contains 14033 nodes and 69257
tetrahedra. Initial ceCT dataset, automatic segmentation, dynamic mesh,
and preliminary modeling results are presented in Fig. 5. The flow is
modeled by the incompressible Navier–Stokes equations using arbitrary
Lagrangian–Eulerian method. Aortic and mitral valves were modeled by
switching boundary conditions on the valve planes. For the simplicity of
mesh generation and numerical modeling we assumed the position of the
valve planes is fixed during the cardiac cycle.

Supplementary materials are available online:
http://dodo.inm.ras.ru/danilov/cmbe-2017/

Adaptive mesh generation
We use several techniques for soft tissue segmentation, including user-
guided active contour segmentation with supervised random forest clas-
sification and textural features computation [2, 3, 10].

Figure 7: Unstructured mesh for VHP human heart: (left) translucent 3D model, (center)
triangular surface mesh, (right) volume cut of the tetrahedral mesh. 367 318 tetrahedra
and 77 953 vertices in the mesh.

Delaunay triangulation algorithm from CGAL Mesh library [11] is used
for adaptive unstructured tetrahedral generation. The mesh size in Visible
Human Project (VHP) human heart (Fig. 7) is 1–3 mm.

Figure 8: VHP human body mesh refined near heart ventricles (left, center) and surface
electrical potential calculated from forward ECG model (right).

We use adaptive mesh to improve mesh resolution in the region of interest
while keeping the total number of mesh elements reasonable. Fig. 8 demon-
strates the results of forward ECG calculation using adaptive unstructured
mesh for full VHP body [10] with 2049945 tetrahedra and 370242 vertices.

Conclusion

The work addresses several segmentation techniques for generation of
individualized computational domains from medical imaging datasets.
We propose automatic algorithms for vascular network segmentation.
We discuss soft tissue segmentation and adaptive mesh generation. A
new technique for segmentation and mesh generation using dynamic
ceCT images was proposed. The proposed algorithms are presented in
details in our previous works [1, 2, 3, 10].
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