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CFD technology for 3D simulation of large-scale
hydrodynamic events and disasters

Yu. V. VASSILEVSKI, K.D.NIKITIN , M. A. OLSHANSKII-I,L
and K. M. TEREKHOV

Abstract — In this paper we discuss the basic components of the comiqmahtechnology for the
simulation of complex hydrodynamic events, such as a bréakdam, a wave pileup, a landslide, or
amud ow. The technology uses three-dimensional equatidénsid dynamics with free boundaries.
The mathematical model is based on the Navier—Stokes egsatiith nonlinear de ning relations
between the stress tensor and the rate of strain tensor.sElgnanent of a particular de ning relation
allows one to simulate both Newtonian ows (break of a damyevaileup), and non-Newtonian ones
(landslide, mud ow, snow avalanche, ood of lava). The nuial model developed in the paper uses
the method of the grid level set function for calculation dfese surface ow evolution and adaptively
reconstructed three-dimensional grids of the octree tgpéitcretization of the ow equations. The
predictive accuracy of this technology is demonstratetiérpaper by comparing the results of certain
numerical calculations with physical experiments; thecafncy of the technology is illustrated by
simulation of the break of a dam and a mud ow using the actiiat@ology of the area around the
Sayano-Shushenskaya dam.

Mathematical modelling is an ef cient tool to predict sceina and consequences
of anthropogenic disasters and natural phenomena. Modé#irge-scale hydrody-
namic events, such as the break of a dam, tsunami wave plangslide, or mud
ow, snow avalanche, or lava eruption plays a signi cantaol'he variety of phe-
nomena and possible scenarios generates many approaches tmimerical sim-
ulation. As an example, we note the modelling of oceanic ali@swith the use of
ocean dynamics equations [27], the spread of tsunami bassldatiow water equa-
tions [24, 30], landslide and debris ow simulation baseddifferent modi cations
of hydrodynamics equations [14], calculation of a ood ofdawvith the use of dis-
crete dynamic systems [8] or snow avalanches runout usingrdic equations for
granulated mixtures [22].

In this paper we study an approach allowing one to simulat®ws events
and phenomena listed above taking into account their aptuaical and geomet-
ric complexity. Standard simpli cations based on the “&walwater' theory or on
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model dimension reduction are not used in this paper. Cationis are performed for
a complete three-dimensional system of hydrodynamic ensfor ows with free
boundaries. The phenomenological variety of consideredgsses is re ected in a
special choice of de ning relations for the stress tensoe. ansider both Newto-
nian media (water) and viscoplastic ones (landslide), teitéchnology developed
here does not prevent a researcher or a user from choosieg mibbably more
complex de ning relations.

The numerical method developed in this paper is based onadawgportant
methods and technologies. We use the level set method [2@lefaing the evo-
lution and nding the position of a free boundary and alsoil&ly re ned oc-
tree grids. Octree grids combine the simplicity of orthaglagrids, the possibility
of hierarchical re ning (in this paper we use re ning towathe free boundary),
the convenience of data access, and fast reconstruction. cAssequence, nowa-
days such grids have become widespread in numerical siondadnd animation,
see, e.g., [15, 18, 20, 21, 25]. The integration in time iggoered by the splitting
scheme of Temam-Chorin—Yanenko type. One step in time isisf convec-
tive transport, addition of diffusive and plasticity ternpsojection on the space of
discrete-divergence-free functions, and advective tearaf the level set function.
The velocity is approximated on a staggered grid, i.e., tecity components are
assigned to the centers of faces, the pressure is positaintmsk centers of cells.
The spatial approximation of advective transport useséh@-£agrangian method,
a nite-difference scheme is used for the diffusion and fitéty terms, the Pois-
son equation for the pressure is approximated by the niteime method. It is
known that this discretization satis es the Ladyzhensk&abuska—Brezzi condi-
tion and is stable on such grids. Numerical experimentsestgbat stability of this
type is retained on octree meshes. Note once again thahit isdmbination of the
approaches mentioned above, i.e., the level set methodngroctree grids, split-
ting schemes, and compact and stable nite differenced,ahgures realistic and
predictive simulation of complex three-dimensional owglwa free boundary.

The remainder of the paper is organized as follows. In Sedtiwve present the
mathematical model. Section 2 describes the computatienhhology for numeri-
cal solution of the differential model. Further we verifyethumerical approach by
comparing the results of numerical and physical experimtartmodels of Newto-
nian and viscoplastic ows. These results are presenteceati@ 3. Finally, Sec-
tion 4 shows the application of the numerical technology dionulation of such
events as the break of the dam at the Sayano-Shushenskayapoyeer plant and
a landslide in the vicinity of the dam. Both experiments wpezformed taking
into account the real topography of the region and do notireqomputational
resources exceeding the capacity of an ordinary (statkesrt) workstation.

1. Mathematical model

The mass and momentum conservation laws for an incomplesgdrous non-
Newtonian uid in Euler's formulation lead to the Navier-kes equations for the
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unknown uid velocity u and stress tensar.

8 u
< < o
r ﬁ+(u N)u divt=f in W) (1.1)

N u=0

wheref are given mass force¥|(t) 2 R3 is a spatial domain occupied by the uid
and dependent on time, is the density. The system is supplied with de ning rela-
tions linking the stress tensor and the rate of strain ter@or= [ Nu + ( Nu)T]=2.
We use the following nonlinear Hershel-Bulkley relatiohg][for viscoplastic me-
dia:

t= pl+ KjDuj" *+tjDuj * Du,j tj> ts

1.2
Du=0,j tj6 ts (12

whereK is the consistency parametég,is the yield stress parameterjs the uid
index,jDuj = élei;jestijsz 1‘2;I is the unit tensorl(; = d}),the scalar function
p denotes the pressure. Particular values of the parantetérsts, andn are tuned
for the most accurate modelling of rheological propertighe considered medium.
Thus,t = 0; n= 1 correspond to Newtonian ows (e.g., water without admigs),
relations witht > 0 andn & 1 can be applied to model non-Newtonian ows, such
as snow avalanches, underwater landslides, debris owsporof lava [2,4,5,16].
In order to overcome the well-known dif culties related toetindeterminate-
ness of the stress tensor in relations (1.2) inside the pheyrigid zones, i.e.,
where the rate of strain tensor equals zero, we use the reggtian of Bercovier—
Engelman [3] which is reduced to the replacemerjDufj by jDuje=  jDuj?+ €2
with some small parametes. This allows us to write down the equations of uid

dynamics in the whole volum@{t) and exclude the stress tensor:
8 fu
< N : N
r —+(u N)u div mDu+ Np=f
TR m P=1 in wi: (L.3)
N u=0

The “ef cient' viscosity parameter is introduced into syist (1.3):
m = KiDujg *+ t4Duje*

and it depends nonlinearly on the rate of deformations.
We suppose that the volume occupied by the uid and the initi& are given
at the initial time moment = 0:

W) = W, Uji=0 = Uo: 1.4)

FindingWt) fort > 0 is a part of the problem which is solved together with equa-
tions (1.3). To give its mathematical formulation, we d&ithe boundary of the
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whole volume into the static bounda@ (for example, the rigid walls or the bot-
tom of the basin) and the free bound&fy) (typically this is the water-air interface,
i.e., TWt)= G[ (). In our calculations we neglect the in uence of the surround
ing gas (air) onto the liquid. Therefore, the mathematicatiet is presented for the
liquid—vacuum idealization. However, if necessary, thaénce of the surrounding
gas can be taken into account in the model and calculatedwtigmny additional
dif culties. Note also that, generally speaking, the stdtoundaryG, can depend
on time.

We assume the non-penetration conditions on the staticdaoyrand, depend-
ing on the considered ow, the nonslip or slip with frictiommditions. The free
boundary evolves with normal velocity components on thendauay, which is writ-
ten in the form of the kinematic relation

Ve= U Nng (1.5)

wherengis the outer unit normal to the surfaGét), vg is the normal velocity of the
surfacet). The balance conditions of the surface tension forces amadhnmal
stresses of the medium also hold on the free surface, whids l® the boundary
condition
tng= Y NG Ppexnc OnGt) (1.6)

where{ is the sum of the principal curvatures of the surfaées, the surface tension
coef cient, pext is the external pressure. If the surface tension forces @tréaken
into account, we may assunve= 0.

In order to nd the position of the free boundary at each timenment, instead
of (1.5) we use the implicit de nition ofyt) as the zero level set of the globally
de ned functionj (t;x):

2<0 x2Wt)
jtx) >0 x2 RENWt)  8t2[0;T]
=0, x2Qt)

The functionj is called thdevel set functioiin the literature. Initial condition (1.4)
allows us to determine the initigl(0;x). At any time moment > 0, the level set
function satis es the following transport equation [23]:

Zl_jt+ afj=0 inR® (0;T] (1.7)
wherea is the uid velocity eld extended outsid&\t). Note that one often poses
the additional restriction 3

iNjj=1 (1.8)
onto the level set function to ensure numerical stabiligy, j is the signed distance
function. Givenj , the outer normal and the curvature of the free boundary ean b
calculated by the formulasg= Nj 5Nj jand{ = N ng.

The mathematical model used in our calculations consisexqaations (1.3),
(1.4), (1.6)—(1.8) and appropriate boundary conditionstatic boundaries.
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Figure 1. 2D quad-tree greed is re ned towards the free boundary (Rip)adaptively re ned octree
grid (cross-section) and values of the level set functiom atd time moment in the test problem of
ooding a container with an object inside (bottom).

2. Fundamentals of computing technology

The free boundary of a uid may have a complicated geometradtual hydro-
dynamic scenarios. As a consequence, an adequate repteseinf this geome-
try and simulation of surface dynamics require grids withubcgently ne spa-
tial resolution in the neighbourhood @t). The use of uniform grids for three-
dimensional problems becomes too burdensome from the datignal viewpoint
in this case. Locally re ned and/or coarsened grids regsigai cantly less com-
putational resources. However, if a free boundary evolves) adaptive grids have
to be reconstructed according to the surface evolutiord @gonstruction can be
suf ciently ef cient from the viewpoint of computationalast if we use structured
octree grids instead of tetrahedral ones traditionallyduse nite element meth-
ods. A two-dimensional analogue of the grids used in ourutations is presented
in Fig. 1 (top). An octree grid pattern in the experiment dfng a container with
a water spurt is shown for a certain time moment in Fig. 1 mojt An ef cient
access and operations with data de ned on the octree grilthedr natural hierar-
chical structure; details can be found, e.g., in monogr2ph [

The grid adaptation strategy used in this work is based ardtdual re nement
in the neighbourhood of the free boundary at the current timament in the neigh-
bourhood ofJ(t + Dt), so that the sizes of two adjacent cells cannot differ maaa th
twice. HereDt is the step in time.

In order to discretize equations (1.3) with respect to spatiriables, we use a
stable scheme on staggered grids. In this scheme the unkreagity components
are assigned to the faces of cells (ttievelocity component is approximated at the



404 Yu. V. Vassilevsket al

center of the cubic cell which is orthogonal to fitie coordinate axis) and the pres-
sure is approximated at the centers of cells. This locatfaheunknowns ensures
the mass conservation law for the discrete solution lodaliyach cell of the parti-
tion. The level set function is approximated at the vertmiesells. Finite-difference
analogues of differential operators on such grids are disaliin detail in [19].

The discretization in time utilizes the approach based enGhorin-Temam-—
Yanenko splitting scheme [6]. Givar(t), p(t), j (t) at a current time moment, one
time step consists in the determinationugf + Dt), p(t + Dt), j (t+ Dt) and is split
into several substeps. First we update the level set funeti@m calculate the new
domain occupied by the uidWMt) ! Wt + Dt). At this step, we use the method
of numerical integration along the characteristics for tita@sport equation (1.7),
which is also known as the semi-Lagrangian method [28]. i¢hse the equation
for the characteristics is integrated with the second ooflerccuracy. Due to ap-
proximation errors, the numerical integration of equafiibrY) may lead and often
does lead to an erroneous loss or gain of the uid volume,jM&1)j & jW(t + Dt)j
without the out ow (or in ow) of the uid. The loss of volume dcreases with adap-
tation of the grid to the boundary and with the use of the methioparticles [11].
An additional correction is performed by nding the congtahfrom the equation

meas$x : j (X) 6 dg= \ol'eference

and further correctiog "W = j d. The value ofd is calculated by the secant
method, and the Monte-Carlo method is used for an approgiroalculation of
measx : j (X) < dg. Further we apply the reinitialization ¢f"®", so that the re-
sulting level set function is the signed distance functidhe details of the reini-
tialization used here can be found in [19, 20]. At this stéye, ¢alculation of the
new ow domainWt) ! Wt+ Dt) is nished, the reconstruction of the grid is per-
formed, and all variables are interpolated from the old ¢pithe new one. In the
process of interpolation and integration of equation (u&have to calculate an ex-
tension of the velocity function(t) from W) into the whole computation domain.
In this case the extension is built constant along the natwathe free boundary,
i.e.,(Nj ) Nu(t) = 0 outside oft).

The second part of the time step of the splitting scheme stingi nding the
new values of hydrodynamic variableswft + Dt): fu(t); p(t)g ' f u(t+ Dt); p(t+
Dt)g. The procedure is divided into several substeps accorditigetclassic splitting
scheme:

the convective step is performed by the semi-Lagrangiamoadet
the viscous and plasticity terms are added;

the obtained velocity eld is projected onto the space okdijence-free vec-
tor functions by solving the grid Poisson equation for thesgure.

The stability of the numerical integration of the systemrisweed by the choice
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of the time step satisfy(ing the Courant condition

)

1

1. 3 1

Dt = min Cihmin  maxju(t)] ; Corzh2. V 2
1Nmin X2V\(t)J ()J 2 min

whereC; andC, are parameters dependent on a particular application. bt mn
merical calculations we have tak€a = 0:66 andC, = 1:4.

3. Veri cation of the method

In this section we present the results of few humerical erparts for model ows.
The results are compared with experimental data and deratast high predicting
ability of the numerical method.

The rst test is the problem of an instantaneous collapse water column in
a horizontal channel of a rectangular cross-section (see, [€0]). A schematic
setup of the problem is shown in Fig. 2 (left). At the initimhe moment the uid
is in its rest state and bounded by a unit cube, kes,y = h = 1. At the next
time moment, the uid column collapses under the action @ tbrce of gravity
directed along the axiz The values of the parameteksr ; V (viscosity, density,
surface tension coef cient) in the experiments were takesimulate a water ow.
In particular,ts= 0 andn = 1. The statistics we are interested in is the position of
the bottom ream front point of the water depending on time ddlculations were
performed on a sequence of octree grids. Each grid was ebttdip a re nement
of the previous one. The results of numerical experimergspaesented in Fig. 2
(right) where they are compared with experimentally mesguwmlues from [17]
(the time shift of 0:007 s is used for the results, which corresponds to the time of
the gate opening). It is well seen that, starting from thei@adorresponding to the
minimal size of a cell equal to=256, the calculation results do not visually differ
from each other and match well the results of physical erpenis.

5t

0 I
P\ALf *3 —.=.h_ =1/64
min
-=-=-h_ =1/128
2 L min |
coh - =1/256
min
h . =1/512
min
1 0 experiment | |

0 1 2 3 4

Figure 2. Left: the schematic setup of the problem of an instantaneoliapse of a water column
in a horizontal channel. Right: Graphs of theoordinate of the center point of water bottom ream
obtained in calculations with different minimal sizes otree grid cells. Comparison is done with
experimental data from [17].
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Figure 3. Out ow of a viscoplastic uid from a tank over an inclined pia. Different colors cor-
respond to different depths. The solution calculated nigaly is shown for the inclination angle
a = 12° at the time moments2 f 0:2;0:6; 1:0; 2:0g s.

The next experiment is the numerical simulation of a visasfit ow over an
inclined plane. The importance of viscoplastic ows ovezlined planes in practical
problems causes great interest in calculation and anaifsisch ows (see, e.g., a
detailed review in [1,13]). In contrast to many other stgdibe present technology
allows one to calculate such ows with all their complexigking into account the
effects of inertia, surface tension, and a complex thregedsional geometry.

The following experiment is simulated numerically: corsic plane inclined
at an anglea to the horizon. A rectangular tank with the lengthand widthY
is placed onto the plane. The tank is lled with a viscoplastiedium of volume
V. We assume that the rheology of the medium satis es the HeksBulkley law.
The side of the tank positioned lower on the inclined plaredgate perpendicular
to the plane. When the gate is opened, the uid is released @amsl downwards
the inclined plane. An example of the ow is shown for diffatdime moments in
Fig. 3.

The numerical experiments were performed with the set ddirpaters corre-
sponding to the physical experiments from [X}= 0:51 m,Y = 0:3m,V = 0:06 ™,
a 2f 12 ;18 g, and the following set of rheological parameters for thesdbel—
Bulkley model:K = 47:68 Pas", n= 0:415,ts= 89 Pa. It was found in [7] that the
Herschel-Bulkley model with these parameters suf cientigll approximates the
rheology of 0.3% Carbopol Ultrez 10 used in physical experita. Further details
of the numerical experiments and calculations with othéwesof the parameters
can be found in [20].

Figure 4 shows the evolution of the middle pro le of the uidee surface for
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different inclination angles of the plane (note the différecaling in the abscissa
and ordinate axes), these graphs are in a good agreementhwitthata (similar
graphs) of the real viscoplastic material from the expenitsén [7]. It is clearly
seen from these graphs that the uid begins to ow suf cigntast at the initial
moment and then slows down sharply around the time momentdi:8s. After
that the front of the uid continues moving over the inclinpldine slower and more
or less uniformly. Note that such dual behaviour of the vigastic ow obtained
by numerical calculations is in excellent correspondenith experimental obser-
vations. In particular, describing the uid dynamics in eximents with a Carbopol
solution, the authors of [7] pointed out: "... we observed tegimes: at the very
beginning { < 1), the ow was in an inertial regime; the front velocity wasarly
constant. Then, quite abruptly, a pseudo-equilibriummegbccurred, for which the
front velocity decayed as a power-law function of time'. Rthat the time scale of
this physical experiment was about 8 hours, whereas we atioppr calculations
fort = 2 s and did not study the asymptotic behaviour of the ow.

Summing up, we point out that the mathematical model and theenical tech-
nology developed here predict the qualitative behaviodrsaatistically meaningful
characteristics of three-dimensional ows of Newtoniam aiscoplastic uids. We
have illustrated this by comparing the results of numerizdtulations and phys-
ical experiments. This allows us to use these model and tdaipy for predictive
simulation of large-scale hydrodynamic events (such adbtbak of a dam, snow
avalanches, landslide etc. using the real region topoldggine examples of such
calculations are presented in the next section.

4. Some calculations of large-scale hydrodynamic events

As an example of numerical simulation of large-scale hygnagnics events (dis-
asters), we present the calculation of the consequencés bféak of the dam and
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Figure 5. The dam and surrounding area. The points where the morgtofithe water level variation
is performed are marked in the gure. Different colors iratie the magnitude of the uid velocity
vector.

the landslide at the Sayano-Shushenskaya dam. Note thedlthaations presented
below do not simulate actual or possible disaster scenéwiothis hydro power,
but only show that such simulations gpeactically possiblewith the use of the
technology described here in the presence of more detatlepghysical data for the
riverside area and the dam conditions. In these calcuktiom have used the to-
pographic map of the area obtained with the help of the ShR#dar Topography
Mission (NASA) [31], the resolution of this map is about 90We used the Google
SketchUp to construct a polygonal approximation of the dachthe earth surface
in the neighbourhood of the dam. The computational domaththa part of the
dam simulated as "broken' are shown in Fig. 5.

We are interested in computing the following data: the waser level at given
points (points P1-P4 are indicated in Fig. 5) and the pressnto the base of the
dam at the tail-water under the spillway. The obtained tesare shown as graphs
in Fig. 6 (in this section all variables are dimensional aiveig in the Sl system).

The following calculation simulates a rock landslide onl#febank slope near
the dam. Since more accurate data were absent, the landstidéation was per-
formed using the Herschel-Bulkley model of a viscoplastiediam with the co-
ef cients K, ts, n taken from [4], where these coef cients were chosen so that t
model describe well the rheological properties of rock Hidgs in the Puglia re-
gion in the south of Italy. We recall that simulation of realble scenarios possibly
requires additional data concerning the properties ofdbks and the conditions of
the slopes in the region; in our case we have no such data.

In the simulation of the landslide we are interested in thal deposit of land-
slide and the pressure acting on the dam structures at the pfathe landslide.
Figure 7 shows the top view at the nal and intermediate tinmments of the cal-
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Figure 6. Dependence of water level on time at points P1-P4 (left)piat the pressure over the
base of the dam at the tail-water under the spillway (right).

Figure 7. Migration of the landslide at time momertts 100s and = 167 s. Different colors mark
the velocity vector magnitudes for the particles of the Hiaie.

culation. The variation of the total kinetic energy of theoMhlandslide masses in
time is shown in Fig. 8 (right). Note that the landslide hast k considerable part
of its kinetic energy by the end of the calculations, thuss ieasonable to assume
that we have determined the nal deposit of the landslidesessThe graph of the
maximal pressure onto the body of the dam at the place of tiuslige is given in
Fig. 8 (left). Note that the maximal number of cubic cellghbtly exceeded 520 and
560 thousand in the simulation of an emergency spill throaiglam break and the
landslide calculation, respectively.
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Figure 8. Pressure onto the dam body at the place of the landslideatiariof the kinetic energy of
the whole landslide mass in time.

Conclusion

In this paper we have presented a numerical technology iagpane to simulate
complex hydrodynamic events based on three-dimensiongtiegs of continuous
medium with free boundaries. The accuracy and reliabilitghis numerical ap-
proach has been tested on model academic problems. Thieabilf the method
have been demonstrated for large-scale hydrodynamic garshlwhere we com-
pute such important indicators as the water rise level aagthssure on the dam
base in the case of a dam break or an emergency water spillsmtha case of a
landslide runout. The use of splitting schemes for intégnadf equations in time
makes it possible to include other physical models into thiserical method, for
example, heat exchange or heat transfer. Simulation ofphalte ows with a free
boundary (including possible phase transitions, i.e., oa of lava) is part of our
future plans.
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