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1 Embedded Discrete Fracture Method
The main advantage of EDFM is its ability to account accurately fractures

using additional degrees of freedom on meshes not fitted to fractures. The
method has obtained close attention in the last few years [5, 4, 6, 7]).

In our work, fractures are assumed to be planar 3D regions with fixed geom-
etry and thickness. Cell-fracture intersection data can be obtained using general
triangle-triangle intersection algorithms. Since the fracture geometry is fixed,
it is sufficient to compute this data and transmissibility indices at the model
setup stage.

We consider long fractures with lengths Lf � h (h is the mesh size) since
fractures of smaller length can be accounted by modifying local permeability of
mesh cells. The fracture width wf is assumed to be less than h, so one can not
resolve fractures on reservoir mesh.

The EDFM for the diffusion model is formulated as follows. We introduce
two separate domains for fracture and medium and pf , pm unknowns defined in
fracture and medium domains, respectively. Let q = −K∇p denote the diffusion
flux, then qf = −Kf∇pf ,qm = −Km∇pm.

1. Using a monotone FV method we discretize equations for the porous me-
dia:

div qm = gm +
∑
i

qFi,m, (1)

2. Using the linear TPFA-FV method we discretize equations for the frac-
tures:

div qf = gf −
∑
i

qFi,m, (2)

where qFi,m is the fracture-matrix flow term from fracture Fi to the medium.
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Figure 1: Darcy fluxes for a fracture in porous media: cell-to-cell (red), cell-to-
fracture (green) and intra-fracture (blue) exchanges.

For the sake of consistency, when a fracture intersects the boundary, the un-
known pf should satisfy the boundary condition for unknowns in porous media.

Application of the finite volume method for the coupled fracture-media sys-
tem (1)-(2) requires three types of fluxes (see Figure 1): cell-to-cell, cell-to-
fracture and intra-fracture exchanges. For the case of several intersecting frac-
tures we also add fracture-to-fracture fluxes.

For a given polyhedral mesh T , the EDFM for the Darcy fluxes in the cell
T with nT fractures Fi can be formulated as follows:∑

f∈∂T

qf · nf −
∑

i=1,...,nT

qFi,T =

∫
T

gdx, (3)

∑
fj∈∂Ti

qFi,fj +
∑

j=1,...,nT

qFi,j ,T + qFi,T =

∫
Ti

gdx, i = 1, ..., nT , (4)

where qf ·nf is the cell-to-cell diffusive flux between the cell T and its neighbor
through the face f and qFi,T is the cell-to-fracture flux from cell T to fracture
Fi. Equation (4) is written for each virtual fracture cell Ti = Fi ∩ T with
intra-fracture fluxes qFi,fj through virtual faces fj of Ti. Also equation (4)
accounts the fracture-to-fracture flux qFi,j ,Tj between the fracture cell Ti and
other fracture cells Tj = Fj ∩ T . It should be noted that

qFi,j ,T = −qFj,i,T .

1.1 Cell-to-cell flux

For the monotone EDFM we use the nonlinear FV schemes for the cell-to-
cell fluxes in (3): nonlinear monotone TPFA [3] or nonlinear MPFA satisfying
the discrete maximum principle (DMP) [2, 8]. For the sake of comparison we
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will also use two conventional linear schemes: linear TPFA and linear MPFA
(O-scheme) [1].

The nonlinear schemes are constructed as follows. For each cell-face pair we
need to find a triplet (see Figure 2 for a 2D example), a set of three vectors t∗
such that for the co-normal vector `f = K · nf we have

`f = α t1 + β t2 + γ t3, (5)

where coefficients α, β and γ are non-negative.
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Figure 2: Two representations of co-normal vector `f = K · nf (2D example).

Since the flux normal component is in fact the directional derivative along
the co-normal vector `f , it can also be represented as the sum of three derivatives
along t∗ which are approximated by central differences:

q+ = α′+ (p+ − p+,1) + β′+ (p+ − p+,2) + γ′+ (p+ − p+,3), (6)

where for cell T+ coefficients α′+, β′+, γ′+ are normalized by coefficients |t+,i|/|`f |
from (5).

For the opposite co-normal vector −`f we have the similar representation
with non-negative coefficients:

q− = α′− (p− − p−,1) + β′− (p− − p−,2) + γ′− (p− − p−,3). (7)

Now we can take a linear combination of (6) and (7) with non-negative coeffi-
cients µ+ and µ−:

qf · nf = µ+q+ + µ−(−q−). (8)

Flux approximation requires the linear combination of µ+, µ− to be convex:

µ+ + µ− = 1. (9)

The second equation of the coefficients µ± defines the features of the resulting
scheme:

• To construct the two-point nonlinear monotone discretization, we set to
zero the contributions to (8) of all the cells except for T+, T−:

−µ+d+ + µ−d− = 0, (10)

where d± = α′± p±,1 + β′− p±,2 + γ′− p±,3;
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• To construct the multi-point nonlinear discretization satisfying the DMP,
we set equal two representations of the flux:

µ+q+ = −µ−q−. (11)

The solution of the equations (9)-(11) is considered in detail in [3, 2].

1.2 Cell-to-fracture flux

For each grid block T and fracture Fi, the diffusive flux between the fracture
and the matrix is

qFi,T = λFi,T (pT − p
f
T,i). (12)

In order to compute transmissibility λFi,T , we use the transport index ap-
proach suggested in [5]. The transmissibility index depends on grid geometry
and media physical properties which are known during the simulation. One
possible approach for its calculation is to use the half of harmonic average of
the fracture λFi

and medium λT transmissibilities:

λFi,T =
λFi

λT
λFi

+ λT
,

where
λT =

2A

< d >T,Fi

(n ·KTn) , λFi
=

2A

wi
kfi .

Here kfi is the isotropic permeability within fracture Fi, A is the fracture surface
area inside a grid block T , n is the normal vector to fracture inside T and
< d >T,Fi

is the averaged normal distance from the fracture to the cell [5]:

< d >T,Fi
=

∫
T
xFi(x

′)dx′

|T |
,

where xFi is the distance from the fracture and |T | is the cell volume.

1.3 Intra-fracture flux

For each fracture Fi crossing grid blocks T1,i and T2,i with common face f we
use a 2D FV scheme for the fracture surface mesh with virtual cells belonging
to T1,i and T2,i. The FV scheme uses collocation of degrees of freedom at the
centers of the virtual cells.

The Darcy flux between fracture cells T1,i and T2,i is

qFi,f = λFi,f (p
f
T2,i
− pfT1,i

), (13)
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where the transmissibility in the isotropic media of the fracture is

λFi,f =
kfi swi

a2 + a1
, (14)

Here wi is the fracture width, s is the length of the fracture intersection with
the face f between cells T1,i and T2,i, and a1, a2 are the distances from virtual
fracture cell centroids to the face between T1,i and T2,i (see Figure 3).
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Figure 3: Flux approximation in fracture.

1.4 Fracture-to-fracture flux

Intersection of fractures Fi and Fj is a segment which can cross several mesh
cells. Within each cell T , flow between intersecting fractures can be computed
as follows [6]:

qFi,j ,T = λFi,j ,T (p
f
i − p

f
j ) (15)

with

λFi,j ,T =
λFi

λFj

λFi + λFj

, λFi
=
kfi wis

a
.

Here wi is the width of fracture Fi, s is the segment intersection length, a is
the averaged normal distance from the center of the fracture subsegments inside
gridblock T (located at each side of the intersection line) to the intersection line
(see Figure 4).
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Figure 4: Two intersecting fractures inside grid block require non-neighbouring
connection between fracture control volumes.

2 Analysis of the monotone EDFM

The following statement may be formulated for the diffusion equation (the
single-phase pressure equation):

Theorem 2.1. Let extremum-preserving nonlinear MPFA scheme is used for
inter-cell Darcy flux discretization. Then the monotone EDFM from sections
1.1–1.4 with Darcy fluxes (3)–(4) is also extremum-preserving.

Proof. It was shown in [2] that that if the nonlinear algebraic system gener-
ated by the nonlinear MPFA is solved by the Picard method, then the resulting
linear system is an M-matrix M, that has the diagonal dominance in rows. If
the nonlinear method converges, then the DMP holds for each iterate and the
converged solution.

Addition of the fracture degrees of freedom and the cell-to-fracture, intra-
fracture and fracture-matrix fluxes is performed by assembling of 2× 2 matrices
MFi,T , MFi,f and MFi,j ,T :

MFi,T =

(
λFi,T −λFi,T

−λFi,T λFi,T

)
, MFi,f =

(
λFi,f −λFi,f

−λFi,f λFi,f

)
,

MFi,j ,T =

(
λFi,j ,T −λFi,j ,T

−λFi,j ,T λFi,j ,T

)
,

(16)

in matrix M, and the result remains a M-matrix with diagonal dominance in
rows. �

Similar theorem can be stated for monotone (non-negativity preserving) non-
linear TPFA scheme.
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Theorem 2.2. Let monotone (non-negativity preserving) nonlinear TPFA scheme
is used for inter-cell Darcy flux discretization. Then the monotone EDFM from
sections 1.1–1.4 with Darcy fluxes (3)–(4) is also monotone.

Proof. The proof is identical to the previous theorem with the diagonal
dominance in columns being used instead of dominance in rows. �

3 Conclusion
We present the monotone embedded discrete fracture method (mEDFM) for

flows in fractured media. The method combines the EDFM approach with two
nonlinear schemes: monotone nonlinear two-point flux approximation and com-
pact nonlinear multi-point scheme satisfying the discrete maximum principle.
The mEDFM method is extremum-preserving for the matrix-fracture system
when combined with the extremum-preserving nonlinear FV scheme for matrix
flow.
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