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Minimal stencil finite volume scheme
with the discrete maximum principle

K. LIPNIKOV∗, D. SVYATSKIY∗, and Yu. VASSILEVSKI†

Abstract — We propose a cell-centered finite volume (FV) scheme with the minimal stencil formed
by the closest neighboring cells. The discrete solution satisfies the discrete maximum principle and
approximates the exact solution with second-order accuracy. The coefficients in the FV stencil de-
pend on the solution; therefore, the FV scheme is nonlinear. The scheme is applied to a steady state
advection-diffusion equation discretized on a general polygonal mesh.

The maximum (or minimum) principle is an important property of solutions of lin-
ear and nonlinear partial differential equations (PDEs). Its discrete counterpart is a
very desirable property to have in a numerical scheme. Unfortunately, schemes sat-
isfying the discrete maximum principle (DMP) impose severe limitations on mesh
regularity [17] and problem coefficients. Violation of the DMP leads to various nu-
merical artifacts, such as a heat flow from a cold material to a hot one, that can be
amplified by non-linearity of physics.

In this article, we propose a finite volume (FV) scheme for a steady-state
advection-diffusion equation with anisotropic coefficients that satisfies the DMP,
works on general polygonal meshes, and has a compact stencil. The price to pay for
this flexibility is that the scheme is nonlinear even for linear problems.

The classical two-point FV scheme for diffusion problems defines a flux across
a mesh edge as the difference of two concentrations at neighboring cells multiplied
by a transmissibility coefficient. It results in a system of algebraic equation with an
M-matrix with diagonal dominance in rows, which immediately implies the discrete
maximum principle [4, 32]. However, the accuracy of this scheme depends on the
mesh geometry, mutual orientation of the mesh edges and principal directions of
the diffusion tensor. More precisely, the principal directions have to be orthogonal
to the mesh edges, which is clearly an impossible requirement for arbitrary ten-
sors and/or arbitrary polygonal cells. The multi-point flux approximation (MPFA)
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scheme solves the accuracy problem by using more than two points in the flux sten-
cil [1] and a matrix of transmissibility coefficients. The MPFA scheme provides a
second-order accurate approximation of concentrations, but is often only condition-
ally stable [16] and conditionally monotone [27].

A new research direction pioneered by Le Potier [28] uses a two-point flux
stencil with two coefficients that depend on the concentrations in neighboring cells.
A few two-point nonlinear FV schemes proposed in the original paper [28] and
developed further in a number of papers (see [9,22,23,26,30] and references therein)
guarantee the solution positivity on general meshes for general tensor coefficients.
These schemes often introduce auxiliary unknowns at the mesh vertices or edges,
whose values are interpolated linearly from the concentrations in the neighboring
cells. A few interpolation-free schemes were proposed and analyzed in [22, 23] for
diffusion and advection-diffusion problems.

The DMP requires a multi-point nonlinear FV scheme. For diffusion problems,
such schemes were proposed in [29,31] using again auxiliary unknowns at the mesh
vertices. In this paper, we propose an interpolation-free multi-point nonlinear ap-
proximation of diffusive fluxes. The resulting scheme has the minimal stencil and
reduces to the classical two-point FV scheme on Voronoi or rectangular meshes for
scalar (and, in a few cases, diagonal tensor) coefficients.

Analysis of the DMP in [31] uses two facts: the M-matrix property and the
diagonal dominance in the rows. Both properties hold true for each iterative ap-
proximation of the discrete solution. Our extension of the multi-point nonlinear FV
scheme to advection-diffusion problems uses nonlinear upwind slope-limiting tech-
niques [13, 23] which break the diagonal dominance in rows. A different analysis
strategy is employed in this paper to prove the DMP, but only for the discrete solu-
tion. Numerical experiments indicate that iterative approximations may violate the
DMP.

Finally, we mention a few other research directions towards achieving the DMP.
A nonlinear stabilized Galerkin approximation for the Laplace operator is consid-
ered in [8]; however, its extension to general elliptic equations is not obvious. A
nonlinear flux splitting is proposed in [11]. A nonlinear algebraic flux-correction is
analyzed in [19]. Different post-processing techniques are employed in [7, 24, 33].
Abundant literature exists for analysis of the DMP for diffusion problems and linear
finite elements (see recent papers [6, 10, 12] and references therein). Monotone dis-
cretization of advective fluxes is also a well studied subject. We mention only a few
techniques, such as nonlinear slope-limiting [13,20], algebraic flux correction [18],
and nonlinear stabilization [15, 25].

The paper outline is as follows. In Section 2, we introduce the advection-
diffusion equation and formulate the necessary conditions for the maximum princi-
ple. In Section 3, we describe a new nonlinear FV scheme and a nonlinear solver
based on the Anderson acceleration. The proof of the discrete maximum principle
is in Section 4. Finally, in Section 5, we illustrate the essential properties of our
scheme with a few numerical experiments.
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1. Steady-state advection–diffusion equation

Let Ω be a two-dimensional polygonal domain with the Lipschitz boundary Γ. The
advection-diffusion equation for unknown concentration c with the Dirichlet bound-
ary condition written in a mixed form reads:

q = vc−K∇c, div q = f in Ω

c = g on Γ.
(1.1)

Here K(x) is a symmetric positive definite discontinuous (possibly anisotropic) dif-
fusion tensor and v(x) is a continuous (for simplicity) velocity field, div v > 0, f (x)
is a source term, and g(x) is a given boundary concentration.

The minimum principle states that for f > 0 the concentration c(x) satisfies [21]:

min
x∈Ω̄

c(x) > min
{

0, min
x∈Γ

g(x)
}
.

The maximum principle is formulated accordingly: for f 6 0 the concentration c(x)
satisfies:

max
x∈Ω̄

c(x) 6 max
{

0, max
x∈Γ

g(x)
}
.

2. Nonlinear FV scheme

Let T be a conformal polygonal mesh composed of NT cells T with edges e. The
mesh may include non-convex cells. We assume that T is edge-connected, i.e. it
cannot be split into two sub-meshes having no common edges. Using the orientation
of the velocity field, we split the boundary Γ into the outflow, Γout, and inflow, Γin,
parts.

Let |T | denote the area of the cell T and |e| denote the length of the edge e. We
denote by nT the exterior unit normal vector to ∂T and by ne the normal vector to
edge e fixed once and for all and such that |ne| = |e|. On the boundary edge, the
vector ne is always exterior. The set of boundary edges is denoted by EΓ, and its
proper subset of edges belonging to Γin is denoted by E in

Γ
. Let xT denote the center

of mass of the cell T , ET denote the set of edges of T . Finally, let xe be the center
of edge e. For simplicity, we assume that the diffusion tensor is constant inside each
cell; otherwise, we approximate it by a constant tensor KT .

The FV scheme uses one degree of freedom, CT , per cell T collocated at xT . In-
tegrating the mass balance equation (1.1) over T and using the divergence theorem,
we obtain:

∑
e∈∂T

σT,e qe ·ne =
∫

T
f dx, qe =

1
|e|

∫
e
qds (2.1)

where qe ·ne is the total flux across the edge e, and σT,e is either 1 or −1 depending
on the mutual orientation of normal vectors ne and nT . In derivation of the FV
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Figure 1. Co-normals `1 and `2 and related pairs ti j, tik for homogeneous medium (left) and hetero-
geneous medium (right). The bold edges indicate the material interface. The bold circles indicate the
location of collocation points. The bold squares indicate the location of harmonic averaging points.

scheme, we will use the Dirichlet boundary data on edges e ∈ EΓ, Ce =
∫

e gds/|e|,
as the known values of the concentration at points xe.

We present a new approximation for the flux qe · ne that guarantees the DMP
and uses concentrations only in the closest neighboring cells. The latter leads to an
algebraic problem with a minimal sparsity structure. A new approximation of the
diffusive flux merges the ideas from [5, 22, 29, 31] that assure the DMP with the
nonlinear two-point flux FV schemes developed in [9, 23, 26], and the definition of
harmonic averaging points proposed in [2]. An approximation of the advective flux
uses the second-order upwind FV schemes [3, 13, 23].

2.1. Diffusive flux in homogeneous anisotropic medium

Let us consider a homogeneous medium and connect the collocation point xTi of cell
Ti with the collocation points xTj in its closest neighbors Tj sharing an edge with Ti.
Let ti j = xTj−xTi . We assume that for each edge e of Ti and an associated co-normal
vector `i = KTine there exist two vectors ti j and tik (see Fig. 1, left) such that

`i = αi j ti j +αik tik, αi j > 0, αik > 0. (2.2)

When cell Ti is adjacent to the domain boundary, one can replace Tj and xTj in the
above formulas with the boundary edge e and its barycenter xe [22, 23].

Recalling the definition of the diffusive flux and using finite differences to ap-
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proximate directional derivatives, we obtain:

qdif
e ·ne ≡−∇c · (KTi ne) =−αi j∇c · ti j−αik∇c · tik

=−αi j(CTj −CTi)−αik(CTk −CTi)+O(|e|). (2.3)

A numerical diffusive flux is obtained by dropping out the approximation term on
the right.

Using Fig. 1 (left) and setting i = 1, j = 2, and k = 3 in (2.3), we obtain a
numerical diffusive flux, q(1)

e , from cell T1 to cell T2 through their common edge e.
Similarly, setting i = 2, j = 1, and k = 4 in (2.3), we obtain a different numerical
flux, q(2)

e , in the opposite direction. The final numerical flux is a linear combination
of these two fluxes:

qdif
e = µ1q(1)

e + µ2(−q(2)
e ) = µ1(α12(CT1−CT2)+α13(CT1−CT3))

−µ2(α21(CT2−CT1)+α24(CT2−CT4)). (2.4)

The weights µ1 and µ2 are selected to balance the relative contribution of the left
and the right fluxes to the final flux:

q(1)
e µ1 +q(2)

e µ2 = 0.

The second equation comes from the approximation viewpoint, linear combination
(2.4) should be convex:

µ1 + µ2 = 1.

If |q(1)
e |+ |q(2)

e | = 0, the solution of these two equations is not unique and we set
µ1 = µ2 = 1/2. Otherwise, we have |q(1)

e |+ |q(2)
e | 6= 0 and must consider two cases.

In the first case q(1)
e q(2)

e 6 0 and the solution is

µ1 = |q(2)
e |/(|q(1)

e |+ |q(2)
e |), µ2 = |q(1)

e |/(|q(1)
e |+ |q(2)

e |).

Thus,

qdif
e =

2q(1)
e |q(2)

e |
|q(1)

e |+ |q(2)
e |

=− 2q(2)
e |q(1)

e |
|q(1)

e |+ |q(2)
e |

and the diffusive flux has two equivalent algebraic representations:

qdif
e = 2µ1(α12(CT1−CT2)+α13(CT1−CT3)) = A12(CT1−CT2)+A13(CT1−CT3)

(2.5)
and

−qdif
e = 2µ2(α21(CT2−CT1)+α24(CT2−CT4)) = A21(CT2−CT1)+A24(CT2−CT4)

(2.6)
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with non-negative coefficients A12, A13, A21, and A24. Note that these coefficients
depend on the fluxes and hence on the concentrations at neighboring cells. The
second case, q(1)

e q(2)
e > 0, leads to a potentially degenerate diffusive flux. In order

to avoid this degeneracy, the authors in [31] re-group the terms in equation (2.4) as
follows:

qdif
e = µ1q̄(1)

e + µ2(−q̄(2)
e )+(µ1α12 + µ2α21)(CT1−CT2) (2.7)

where q̄(1)
e = α13(CT1 −CT3), q̄(2)

e = α24(CT2 −CT4). The coefficients µ1 and µ2 are
computed as before by balancing the modified numerical fluxes:

q̄(1)
e µ1 + q̄(2)

e µ2 = 0

and using the convexity condition. Again, if the solution is not unique, we set µ1 =
µ2 = 1/2. For the case q̄(1)

e q̄(2)
e 6 0, we obtain

qdif
e =2µ1q̄(1)

e +(α12 + µ2α21)(CT1−CT2)
=A13(CT1−CT3)+A12(CT1−CT2)

=−2µ2q̄(2)
e − (α12 + µ2α21)(CT2−CT1)

=−A24(CT2−CT4)−A21(CT2−CT1) (2.8)

where A12 = A21 = µ1α12 + µ2α21. For the case q̄(1)
e q̄(2)

e > 0, we obtain

qdif
e = (µ1α12 + µ2α21)(CT1−CT2) = A12(CT1−CT2). (2.9)

The coefficients A12, A13, and A24 in (2.8), (2.9) are non-negative by construction.
Note briefly that calculating Ai j, inserting the diffusive fluxes in the mass bal-

ance equation, and neglecting other terms, we get an algebraic problem with an
M-matrix, which has a diagonal dominance in its rows. The stencil of this matrix
is smaller than that in [31]. For a logically square mesh, the proposed FV scheme
results in a five-point stencil contrary to a nine-point stencil in [31].

2.2. Diffusive flux in heterogeneous anisotropic medium

Let us consider a heterogeneous medium. Without loss of generality, it is sufficient
to describe the approximation of the diffusive flux in the case of two materials, as
illustrated in Fig. 1 (right).

Let an interface edge e be shared by cells T1 and T2. We denote the line contain-
ing e by pe and consider a continuous piecewise linear function R(x) such that

R(xT1) = CT1 , R(xT2) = CT2

and the diffusive flux is continuous:

KT1∇R(x) ·ne = KT2∇R(x) ·ne.
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Then, there exist a harmonic averaging point ye ∈ pe and a coefficient αe indepen-
dent of R such that [2]:

Ce ≡R(ye) = αeCT1 +(1−αe)CT2 , 0 6 αe 6 1 (2.10)

where

αe =
d2,ene · (KT1ne)

d2,ene · (KT1ne)+d1,ene · (KT2ne)

and di,e is the distance from point xTi to line pe.
The method described in the previous section can be adjusted to discontinu-

ous tensors by using harmonic averaging points. We note that approximation of the
directional derivative ∇c · ti j is accurate only inside each material. This limits sig-
nificantly the number of admissible directions ti j to the point that expansion (2.2)
does not exist. The additional vectors tie from collocation points xTi and xTj to the
harmonic point ye can be used to find the expansion.

Figure 1(right) illustrates the case when the harmonic averaging point ye is in-
side the edge e so that the vectors t1e and t2e do not cross the material interface
and the respective directional derivatives are accurate. The formula for the resulting
final diffusive flux qdif

e involves both CTi and Ce. The latter can be eliminated using
the convex combination (2.10) without increasing the stencil size and preserving the
DMP. For example, formula (2.5) is modified as follows:

qdif
e = A12(CT1−Ce)+A13(CT1−CT3) = A12(1−αe)(CT1−CT2)+A13(CT1−CT3).

(2.11)
The other formulas are modified similarly.

It is pertinent to note that the presented scheme can be used even when ye 6∈
e. Indeed, consider a piecewise linear function R(x) that provides the best local
approximation of the continuous solution c(x). Then, the error associated with this
approximation will be the dominant error in the numerical diffusive flux. The actual
geometric location of the point ye becomes irrelevant.

2.3. Advective flux

To approximate the total advective flux across the edge e,

qadv
e =

∫
e
cvdx

we use the second-order upwind approximation. Let us define a discontinuous piece-
wise linear function R(x) (different from the one introduced above) and denote its
restriction to cell T as RT (x). Let the edge e be shared by cells Ti and Tj and the
vector ne be exterior to Ti. Then, we define

qadv
e ·ne = v+

e RTi(xe)+ v−e RTj(xe) (2.12)
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where

v+
e =

1
2
(ve + |ve|), v−e =

1
2
(ve−|ve|), ve =

1
|e|

∫
e
v ·ne dx. (2.13)

The linear reconstruction has to be limited to get a monotone scheme. Following
[23], we use a tensorial limiter:

RT (x) = CT +LT (gT ) · (x−xT ) ∀x ∈ T (2.14)

where gT is the reconstructed gradient and LT is a limiting 2× 2 matrix. This re-
construction preserves the mean value of the concentration for any choice of LT .
The admissible gradient g̃T = LT (gT ) must result in a linear reconstruction that is
bounded at the neighboring collocation points xk, which are either the barycenters
of the closest neighboring cells T ′, or the centers of boundary edges e′ ∈ EΓ∩ET :

min{CT ′ ;Ce′}6 CT + g̃T · (xk−xT ) 6 max{CT ′ ;Ce′} . (2.15)

Due to (2.15), we get that g̃T ≡ 0 in local minima and maxima. The derivation of
the limiting matrix is described in detail in [23] and will not be repeated here.

Remark 2.1. According to the numerical evidence, for a singularly perturbed
advection-diffusion equation, conditions (2.15) should be weakened [23]. More pre-
cisely, the upper bound should involve only inflow boundary edges e′′ ∈ E in

Γ
∩ET :

min{CT ′ ;Ce′}6 CT + g̃T · (xk−xT ) 6 max{CT ′ ;Ce′′} . (2.16)

Remark 2.2. The linear first-order upwind approximation is obtained by setting
RT (x) = CT so that

qadv
e ·ne = v+

e CTi + v−e CTj . (2.17)

2.4. Anderson acceleration

Let C be the vector of all cell-centered unknowns. Replacing the fluxes in equations
(2.1) by their numerical approximations, we obtain a system of nonlinear equations

M(C)C = F(C), M(C) = Mdif(C)+Madv(C) (2.18)

with a square matrix M and a right-hand side vector F whose entries are defined by
formulas (2.1), (2.5), (2.6), (2.8), (2.9), (2.11), and (2.12). Algebraically, contribu-
tions from the diffusive and advective fluxes lead to summation of two M-matrices
as shown in (2.18). The first (diffusion) matrix has diagonal dominance in rows, the
second (advection) matrix – in columns (see [23]). Since this sum does not always
preserve the diagonal dominance in rows, a proof of the DMP for the solution of
(2.18) becomes nontrivial.
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The efficient solution of this system is crucial for practical usage of the pro-
posed FV scheme. We recommend the Anderson acceleration technique (see Algo-
rithm 2.1 below), which does not require computation of the Jacobian and relies on
the approximate solution of linearized systems. Contrary to the Picard method, the
Anderson acceleration method does not guarantee the DMP for intermediate iter-
ative approximations Ck+1 neither for diffusion, nor for advection–diffusion prob-
lems. The DMP holds only for the converged solution.

Algorithm 2.1. Anderson acceleration.
1: Choose C0 and a fixed integer number m.
2: Apply m Picard iterations Ck = M(Ck−1)−1F(Ck−1) and set C̃k = Ck, δCk =

C̃k− C̃k−1, k = 1, . . . ,m.
3: for k = m, . . . do
4: Determine weights α1, . . . ,αm by solving the constrained minimization prob-

lem

min
∑

m
i=1 αi=1

‖
m

∑
i=1

αiδCk−m+i‖. (2.19)

5: Set new iterate:

Ck+1 =
m

∑
i=1

αiC̃k−m+i. (2.20)

6: Check the convergence criterion for the nonlinear residual.
7: Compute C̃k+1 = M(Ck+1)−1F(Ck+1) and set δCk+1 = C̃k+1−Ck.

8: end for

3. Analysis of the discrete maximum principle

For a pure diffusion equation, the DMP for both the solution of (2.18) and each
Picard iterate Ck = M(Ck−1)−1F(Ck−1) follows from the algebraic result in [4,32].
In all our experiments the matrix Mdif(Ck−1) have been irreducible, the result which
is expected for a diffusion problem.

For an advection-diffusion equation with the first-order upwind approximation
of advective fluxes (2.17), the matrix Madv has a diagonal dominance in its rows.
In order to show this, we consider any cell T such that ET ∩E in

Γ
= ∅ and the cor-

responding row i in the matrix Madv with entries mi j. The definitions of the matrix
(2.1), the discrete advective flux (2.17), (2.13), and the assumption divv > 0, imply:

∑
j

mi j = ∑
e∈ET

v+
e ·1+ v−e ·1 = ∑

e∈ET

ve =
∫

T
divvdx > 0.
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Considering any cell such that ET ∩E in
Γ
6= ∅, we obtain:

∑
j

mi j = ∑
e∈ET \E in

Γ

v+
e ·1+ v−e ·1 = ∑

e∈ET

v+
e + v−e − ∑

e∈ET∩E in
Γ

v−e

=
∫

T
divvdx− ∑

e∈ET∩E in
Γ

v−e >
∫

T
divvdx > 0,

since v−e 6 0. Therefore, due to the diagonal dominance in rows of M(Ck−1) =
Mdif(Ck−1) + Madv, the same algebraic result [4, 32] can be applied to prove the
DMP for both the solution of (2.18) and each Picard iterate.

For the second-order upwind approximation (2.12), the proof of the DMP for
solution of (2.18) uses ellipticity (K(x) > 0, divv > 0) of the continuous operator
and the special multi-point form of the diffusive flux.

Theorem 3.1 (Minimum principle). Let a solution C to (2.18) exist, f > 0,
divv > 0, and Mdif(C) be an irreducible matrix. Then

min
T∈T

CT > Cmin ≡min
{

0; min
e∈EΓ

Ce

}
.

Proof. The proof is by a contradiction. Let us consider the cell T with the small-
est concentration CT and assume that CT < Cmin. Without lose of generality, we as-
sume that vectors ne, e ∈ ET , are exterior to T . Let T = T1, while T ′ and T ′′ stand
for T2 and T3, respectively, in the diffusive flux formulas, and T ′e stand for the cell
sharing the edge e with T . Since CT is the global minimum, g̃T = 0 and RT ≡CT
due to (2.15). The definition of advective fluxes gives

∑
e∈ET

qadv
e ·ne = ∑

e∈ET \E in
Γ

(
v+

e CT + v−e RT ′e (xe)
)
+ ∑

e∈ET∩E in
Γ

v−e Ce.

Since CT is the local minimum, it holds RT ′e (xe) > CT and Ce > CT . Using that
v−e = ve on the inflow edges, ve = v+

e + v−e , the divergence theorem, v−e 6 0, and the
assumption, we obtain

∑
e∈ET

qadv
e ·ne 6 ∑

e∈ET \E in
Γ

(v+
e + v−e )CT + ∑

e∈ET∩E in
Γ

v−e CT = CT ∑
e∈ET

ve = CT

∫
T

divvdx 6 0.

A similar argument can be used for diffusive fluxes. Since CT is the local mini-
mum, each of the three possible discrete diffusive fluxes is negative. For fluxes (2.5),
(2.8), we obtain

qdif
e ·ne = A12(CT −CT ′)+A13(CT −CT ′′) 6 0

due to non-negativity of A12 and A13. Similarly, for fluxes (2.9) and (2.11), we get

qdif
e ·ne = A12(CT −CT ′) 6 0
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and
qdif

e ·ne = A12(1−αe)(CT −CT ′)+A13(CT −CT ′′) 6 0.

The mass balance equation (2.1),∫
T

f dx− ∑
e∈ET

qdif
e ·ne− ∑

e∈ET

qdif
e ·ne = 0 (3.1)

implies that all terms are non-negative and must be equal to zero. Therefore, CT ′e =
CT for all neighboring cells T ′e having a non-zero matrix connection with T . The
assumption of the matrix irreducibility implies that C is a constant vector. Finally,
considering a cell T with edge e ∈ EΓ, we obtain that CT = Ce, which contradicts to
our assumption and proves the assertion of the theorem.

Theorem 3.2 (Maximum principle). Let a solution C to (2.18) exist, f 6 0,
divv > 0, and Mdif(C) be an irreducible matrix. Then

max
T∈T

CT 6 Cmax ≡max
{

0; max
e∈EΓ

Ce

}
.

The proof is similar to that of Theorem 3.1.

4. Numerical experiments

We verify the convergence and monotonicity properties of the proposed nonlinear
FV scheme with a few numerical experiments.

4.1. Convergence analysis

The convergence analysis is performed on a sequence of randomly distorted quadri-
lateral meshes. These meshes are obtained by perturbation of uniform square meshes
with the mesh size h. Each internal node (x,y) is relocated to a new position (x̃, ỹ)
as follows:

x̃ := x+ γ ξxh, ỹ := y+ γ ξyh (4.1)

where ξx and ξy are random variables with values between -0.5 and 0.5 and γ ∈ [0,1]
is the degree of distortion. We set γ = 0.6 to avoid mesh tangling. It is pertinent to
emphasize that the distortion is performed at each refinement level. A distorted mesh
looks like the mesh shown in Fig. 2 (center).

Let us define the following mesh-dependent norms for a vector C of cell-based
concentrations and a vector q of edge-based fluxes:

|||C|||2 = ∑
T∈T
|T | |CT |2, |||q|||2 = ∑

e∈EI∪EB

|Se| |qe ·ne|2
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Figure 2. Left: computational domain for the anisotropic diffusion problem. Center: distorted quadri-
lateral mesh. Right: profile of the numerical solution.

where |Se| is a representative area for the edge e. More precisely, |Se| is the arith-
metic average of the areas of the mesh cells sharing the edge e. Let Cex and qex

be the vectors of exact concentrations and fluxes. We define the following relative
errors:

ε
c
2 =
|||Cex−C|||
|||Cex|||

, ε
q
2 =
|||qex−q|||
|||qex|||

.

The nonlinear iterations are terminated when the initial residual norm is reduced
108 times.

In the first experiment, we consider an advection-diffusion problem in Ω =
[0,1]2 with a smooth solution. The anisotropic discontinuous diffusion tensor is
given by:

K =


K1 = 1, x < 1/2

K(2) = R(−θ)
[

102 0
0 1

]
R(θ), x > 1/2

where R(θ) is the clock-wise rotation matrix and θ = π/6. We set a constant veloc-
ity vector, v = (3,−2)T , and choose the following exact solution:

c(x,y) =
{

1−2y2 +4xy+2y+6x, x < 1/2
b2y2 + c2xy+d2x+ e2y+ f2, x > 1/2

(4.2)

where

b2 =−2, c2 =
4K(2)

11 −2K(2)
12 −2

K(2)
11

, d2 =
4(K(2)

12 +1)

K(2)
11

e2 =
4K(2)

11 −2K(2)
12 −2

K(2)
11

, f2 =
4K(2)

11 +2K(2)
12 −3

K(2)
11

.

The coefficients b2,c2,d2,e2, f2 are defined to provide the continuity of the solution
and its flux.
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Table 1.
The convergence results for the problem with the smooth solution (4.2).

h εC
2 c ε

q
2

1/16 1.38e−03 4.13e−02
1/32 3.86e−04 1.56e−02
1/64 1.05e−04 6.01e−03

1/128 2.69e−05 2.47e−03
1/256 6.40e−06 1.11e−03

rate 1.93 1.31

The convergence results presented in Table 1 indicate that the FV scheme is
second-order accurate. A super linear convergence of fluxes has been also observed
in other experiments and requires further analysis.

4.2. Discrete maximum principle for anisotropic diffusion problem

In the second experiment, we demonstrate the DMP property of the proposed FV
scheme for a highly anisotropic diffusion problem. The problem is defined in a unit
square with a square hole in the center, Ω = (0,1)2/[4/9,5/9]2, and the diffusion
tensor is homogeneous but anisotropic:

K = R(−θ)
[

1 0
0 10−3

]
R(θ), θ = 67.5◦.

The domain boundary consists of two disjoint parts: internal Γ1 and external Γ0.
We impose the Dirichlet boundary conditions as c = 1 on Γ1 and c = −1 on Γ0.
A scheme of the computational domain Ω with the primary directions of the diffu-
sion tensor is shown in Fig.2 (left). Finally, we set f = 0, so that according to the
maximum and minimum principles, the solution should vary between -1 and 1. The
numerical solution computed on a coarse distorted quadrilateral mesh is shown in
Fig.2 (right). This solution satisfies the DMP.

4.3. Discrete maximum principle for advection dominated problem

In the third set of numerical experiments, we demonstrate the monotone property of
the FV scheme for an advection-diffusion problem. These numerical results illus-
trate the conclusions derived in Theorems 3.1 and 3.2.

Let us consider a problem with discontinuous Dirichlet boundary data. The dis-
continuity produces an internal shock in the solution, in addition to the exponential
boundary layers. This is a popular test case for discretization schemes designed for
advection-dominated problems (see [14, 15]). Following [15], we set

v =
(

cos
π

3
,−sin

π

3

)
, K = νI, ν = 10−8.
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Figure 3. The DMP test for advection–diffusion problem: the numerical solution varies between 0
and 1.

The Dirichlet boundary conditions are as follows:

c(x,y) =
{

0 if x = 1 or y 6 0.7
1 otherwise.

The exact solution has a boundary layer next to two boundary lines y = 0 and x = 1.
It also has an internal layer along the velocity streamline passing through point
(0, 0.7).

The problem is discretized on the unstructured polygonal mesh shown in Fig. 3
with 4096 cells and the effective mesh parameter h = 1/64. The mesh Péclet number
is Pe= 781250.

In order to measure the quality of the numerical solution, the authors of [15]
have proposed several estimates which quantify the numerical solution oscillations
and smearing effects caused by the discretization scheme. Let Ω1 = {(x,y) ∈ Ω :
x 6 1/2, y > 0.1}, Ω2 = {(x,y) ∈ Ω : x > 0.7}, and Ω3 denote a cell strip in the
vicinity of the line y = 0.25,

Ω3 = {T ∈T : xT = (xT ,yT ), |yT −0.25|6 |T |1/2}.

First, we define two estimates which characterize the undershoots and overshoots in
Ω1, respectively:

oscmin
int ≡

(
∑

xT∈Ω1

(min{0, CT})2
)1/2

(4.3)

oscmax
int ≡

(
∑

xT∈Ω1

(max{0,CT −1})2
)1/2

. (4.4)

Second, we define an estimate which quantifies the oscillations near the boundary
layer in Ω2:

oscexp ≡
(

∑
xT∈Ω2

(max{0,CT −1})2
)1/2

. (4.5)
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Table 2.
The quality of numerical solutions in two nonlinear FV schemes.

Positivity preserving FV scheme FV scheme with DMP

oscmin
int 0 0

oscmax
int 6.96e−08 1.91e−15

oscexp 1.84e−13 2.99e−15
smearint 1.13e−01 1.13e−01
smearexp 8.36e−05 7.05e−05

Third, we define two estimates which measure the thickness of the boundary layer
and the internal shock, respectively:

smearexp ≡
(

∑
xT∈Ω2

(min{0,CT −1})2
)1/2

(4.6)

smearint ≡ x2− x1 (4.7)

where
x1 = min

xT∈Ω3,CT >0.1
xT , x2 = max

xT∈Ω3,CT 60.9
xT .

For the continuous solution these estimates depend on the diffusion process only,
so they are much smaller than the considered mesh size. For the numerical solution,
the small values of estimates (4.3)–(4.7) characterize the almost non-oscillatory and
almost non-diffusive discrete solution.

The results obtained by the nonlinear FV method are shown in Table 2. They
are competitive with the best results presented in review [15]. We also compare the
new scheme to the nonlinear positivity preserving the FV scheme in [23]. The new
scheme has about the same smearing properties, but has no overshoots up to the
numerical precision.

Conclusion

We have proposed a new nonlinear FV scheme for advection–diffusion equations.
The scheme satisfies the discrete maximum principle and has a compact stencil. It
reduces to the classical five-point FV scheme stencil on square meshes for diffusion
equations with diagonal diffusion tensors. The scheme is second-order accurate for
concentrations and at least first-order accurate for fluxes. We have proved the DMP
for this scheme and have demonstrated the properties of our scheme with a few
numerical experiments.
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