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Abstract

We present a new second-order accurate monotone finite volume (FV) method for the
steady-state advection-diffusion equation. The new method uses nonlinear approximation
for both diffusive and advective fluxes and guarantees solution positivity. The interpolation-
free approximation of the diffusive flux uses the nonlinear stencil proposed in [23]. Approx-
imation of the advective flux is based on the second order upwind method with a specially
designed minimal nonlinear correction. The second-order convergence rate and monotonic-
ity are verified with numerical experiments.
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1 Introduction

Predictive numerical simulations require accurate and reliable discretization methods. The re-
sulting discrete systems must inherit or mimic fundamental properties of continuous systems.
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The maximum principle and local mass conservation are the essential properties of the steady-
state advection-diffusion equation. Despite a relative simplicity of this equation, an accurate
discretization method that satisfies the discrete maximum principle (DMP) is hard to develop.
Our focus is on a simplified version of the DMP that provides only solution positivity as is re-
ferred to as the monotonicity condition. Some physical quantities, such as a concentration and
temperature, are non-negative by their nature and their approximations should be non-negative
as well. We develop a nonlinear finite volume (FV) method that satisfies the monotonicity con-
dition for both diffusion dominated and advection dominated regimes.

In advection dominated problems a solution may have internal shock and exponential or parabolic
boundary layers. The thickness of these features is small compared to mesh size and hence the
layers cannot be resolved properly. In the case of diffusion dominated problems diffusive fluxes
may be very poor approximated in a particular direction since mesh cells are not aligned with the
dominated diffusion directions. In particular, these problems may appear in the case of highly
anisotropic media. This leads to unwanted spurious (nonphysical) oscillations in the numerical
solution. The design of advanced discretization schemes which eliminate or significantly reduce
these oscillations is the field of extensive research for more than three decades.

In the finite element (FE) framework one of the most popular approach was proposed by Brooks
and Hughes in [5] and is referred to as the streamline upwind Petrov Galerkin (SUPG) method.
Although the stabilization procedure proposed in this method significantly improves the robust-
ness of the FE discretization, the spurious oscillations along sharp layers may still appear in the
numerical solution. They are caused by the fact that the SUPG method is neither monotone nor
monotonicity preserving method. The review of several modifications and improvements for
SUPG method is presented in [13]. These modifications aimed to design discretization methods
that satisfy the DMP, at least in some model cases, and the authors of [13] proposed to call
them spurious oscillations at layers diminishing (SOLD) methods. Another approach towards
a robust FE discretization method was proposed in [17,18] and is referred to as algebraic flux
correction approach. One of the disadvantages of FE discretizations that they are not locally
conservative in terms of the original computational mesh. The local mass conservation is a
very desirable property if the advection-diffusion equation is nonlinear and coupled with other
transport processes.

The FV type discretizations guarantee the local mass conservation by construction. Many FV
methods for advection-diffusion equation have been developed for the last decades, see [32],
[3], [4], [10], [24], [20] and references therein. It turns out that in the design of monotone,
second order accurate discretizations the approximation of diffusive fluxes is as challenging as
the approximation of the advective fluxes. The advective fluxes are usually controlled by using
upwinding approach [2] along with different slope-limiting techniques [4] or introduction of
artificial viscosity [24]. For a long time it was not clear how to construct a monotone discretiza-
tion of a diffusive part in the case of general meshes and diffusion tensors. Many advanced
linear methods for approximation of diffusive fluxes fail to satisfy the monotonicity condition
when the media is heterogeneous and anisotropic or the computational mesh is strongly per-
turbed. This includes the mixed finite element (MFE), mimetic finite difference (MFD), and
multi-point flux approximation (MPFA) methods that are locally conservative and second-order
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accurate on unstructured meshes [22]. The linear two-point flux approximation FV method,
still used in modeling flows in porous media, is monotone but not even first-order accurate for
anisotropic problems. Monotonicity limits of the MPFA methods are analyzed in [1,25]. The
theoretical analysis of sufficient mesh conditions providing the DMP has been formulated in
70’s by P.Ciarlet and P.Raviart [8] for piecewise-linear finite element approximations. Later,
the DMP has been shown for weaker mesh conditions [16,27]. It was noticed in [4,13] that
nonlinear approximations is the key ingredient and the price which has to be paid to construct
monotone and at least the second order accurate discretization. To guarantee solution positiv-
ity for arbitrary meshes, a number of nonlinear methods have been proposed for the Poisson
equation [6] and more recently for general diffusion equation [9,15,21,22,26,31,33].

The approximation of diffusive fluxes in the proposed monotone FV method is based on a non-
linear two-point flux approximation scheme. The original idea was proposed by C.LePotier [21]
for the case of triangular meshes. In [22], we proved monotonicity of his method for steady-
state diffusion problems and extended it to shape regular polygonal meshes and scalar diffusion
coefficients. The method has been extended to tetrahedral meshes by I.Kapyrin for the diffusion
equation [15] and by I.Kapyrin and Yu.Vassilevski for the unsteady advection-diffusion equa-
tions [31]. Further development of the method was made by A.Yuan and Z.Sheng [33]. Their
method can be applied to a much bigger class of polygonal meshes consisting of star-shaped
cells and full tensor diffusion coefficients. The common property of all these methods is that
in addition to primary unknowns defined at mesh cells, solution values at mesh vertices are
involved in the method construction. These auxiliary unknowns are interpolated from primary,
cell-based unknowns. The interpolation problem becomes even a more challenging task when
the diffusion coefficient is discontinuous. The interpolation methods studied in [33] use a piece-
wise linear approximation to the solution around points where the coefficient is discontinuous.
However, as shown in [22,33], the choice of the interpolation method affects the accuracy of
the nonlinear FV method even in the case of a constant diffusion coefficient. The choice of an
interpolation method depends of the problem. The particular interpolation method may be ef-
ficient for one problem and be inaccurate for another. The three-dimensional extension of the
nonlinear FV method to polyhedral meshes [9] excludes the use of nodal interpolation yet may
require edge interpolation in certain pathological cases. Face interpolation [9] used at faces with
jumping diffusion coefficient is based on physical relations.

In [23] we proposed the nonlinear FV method which does not use any auxiliary unknowns at
mesh vertices. The numerical experiments presented in [23] demonstrate that the interpolation-
free approach requires less nonlinear iterations than the methods using interpolation algorithms.
The nonlinear FV method proposed in this article follows the same idea for the diffusive fluxes.
The approximation of advective fluxes does not use any interpolation techniques as well. It is
based on the upwinding approach along with a piecewise linear reconstruction of the FV so-
lution. This reconstruction depends on the solution so the approximation of advective fluxes
is also nonlinear. In order to guarantee monotonicity and robustness of the method, we pro-
pose a new slope limiting technique, see [7,11] for discussions on slope limiters. It is exact
for linear solutions and thus has the second order truncation error. Our numerical experiments
show the second-order convergence rate in the mesh-dependent L2-norm. The slope limiter is a
nonlinear operator designed to minimize a correction to the gradient of the least-square linear

3



reconstruction and satisfy monotonicity conditions. This allows us to prove positivity of the
discrete solution.

The two-point flux approximation methods result in schemes with a compact stencil. For square
meshes and a diagonal diffusion tensor this stencil reduces to the conventional 5-point stencil.
The major computational overhead in nonlinear FV methods comes from the solution of a non-
linear algebraic problem. The Picard method, used in this and the other papers, guarantees that
the solution is positive on each iteration.

The paper outline is as follows. In Section 2, we state the steady advection-diffusion problem. In
Section 3, we describe the nonlinear finite volume scheme. In Section 4, we prove monotonic-
ity of the proposed scheme. In Section 5, we present numerical analysis of the scheme using
triangular, quadrilateral and polygonal meshes.

2 Steady-state advection-diffusion equation

Let Ω be a two-dimensional polygonal domain with boundary Γ = ΓR ∪ ΓD where ΓD = Γ̄D

and ΓD 6= ∅. We consider a model advection-diffusion problem for unknown concentration c:

div (vc−K∇c) = f in Ω

c = gD on ΓD

−K
∂c

∂n
+ cv · n = gR on ΓR

(1)

where K(x) = KT (x) > 0 is a continuous (possibly anisotropic) diffusion tensor, v(x) ∈
C1(Ω̄) is a velocity field, div v > 0, f is a source term, and n is the exterior normal vector.
We denote by Γout the outflow part of Γ where v · n > 0, and define Γin = Γ \ Γout. The set
ΓR ⊂ Γout can be empty.

In order to guarantee non-negativity of the solution c(x) we have to require additionally that
f(x) > 0, gD > 0 and gR 6 0. Under these assumption c(x) will be non-negative. From a
physical point of view the requirements f(x) > 0 and gR 6 0 mean that no mass or energy can
be taken out of the system.

For advection-dominated problems the Dirichlet boundary conditions on Γout may result in
parabolic and/or exponential boundary layers. A parabolic boundary layer can be also generated
by discontinuity in boundary data gD. An ideal discretization scheme must introduce a minimal
amount of numerical diffusion to avoid excessive smearing of boundary layers but sufficient to
damp non-physical oscillations.

Remark 2.1 A monotone FV scheme for a discontinuous tensor coefficient K can be developed
using a modified discretization of the diffusive flux as described in [9,23].

4



3 Monotone nonlinear FV scheme on polygonal meshes

Let q = −K∇c+ cv denote the total flux which satisfies the mass balance equation:

div q = f in Ω. (2)

In this section, we derive a FV scheme with a nonlinear two-point flux approximation.

Let T be a conformal polygonal mesh composed of shape-regular cells. Let NT be the num-
ber of polygonal cells and NB be the number of boundary edges. We assume that T is edge-
connected, i.e. it cannot be split into two meshes having no common edges.

We denote by EI , EB disjoint sets of interior and boundary edges. The set EB is further split
into subsets ED

B and ER
B where the Dirichlet and Robin boundary conditions, respectively, are

imposed. Alternatively, the set EB is split into subsets Eout
B and E in

B of edges belonging to Γout

and Γin, respectively. Finally, ET denotes the set of edges of polygon T .

Integrating equation (2) over a polygon T and using Green’s formula we get:∫
∂T

q · nT ds =
∫

T
f dx, (3)

where nT denotes the outer unit normal to ∂T . Let e denote an edge of cell T and ne be the
corresponding normal vector. For a single cell T , we always assume that ne is the outward
normal vector. In all other cases, we specify orientation of ne. It will be convenient to assume
that |ne| = |e| where |e| denotes the length of edge e. The equation (3) becomes

∑
e∈∂T

qe · ne =
∫

T
f dx, (4)

where qe is the average flux density for edge e

qe =
1

|e|

∫
e
q ds.

For each cell T , we assign one degree of freedom, CT , for concentration c. Let C be the vector
of all discrete concentrations. If two cells T+ and T− have a common edge e, the two-point flux
approximation is as follows:

qh
e · ne = M+

e CT+ −M−
e CT− , (5)

where M+
e and M−

e are some coefficients. In a linear FV method, these coefficients are equal
and fixed. In the nonlinear FV method, they may be different and depend on concentrations in
surrounding cells. On edge e ∈ ΓD, the flux has a form similar to (5) with an explicit value for
one of the concentrations. For the Dirichlet boundary value problem, ΓD = ∂Ω, substituting
(5) into (4), we obtain a system of NT equations with NT unknowns CT . Dirichlet and Robin
boundary conditions are considered in Section 3.4.
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θe,2

θe,1

Fig. 1. Notation: vector `e forms acute angles with vectors te,1 and te,2; the collocation points are marked
by solid circles.

3.1 Notations

For every T in T , we define the collocation interior point xT at the barycenter of T . Similarly,
for every edge e ∈ EB, we define the collocation point xe at the barycenter of e.

For every T we define a set ΣT of nearby collocation points as follows. First, we add to ΣT the
collocation point xT . Then, for every interior edge e ∈ ET ∩ EI , we add the collocation point
xT ′e , where T ′e is the cell, other than T , that has edge e. For every boundary edge e ∈ ET ∩ EB,
we add the collocation point xe. Let N(ΣT ) denote the cardinality of ΣT .

We shall refer to collocation points on edges e ∈ EB as the secondary collocation points. They
are introduced for mathematical convenience and will not enter the final algebraic system. In
contrast, we shall refer to the other collocation points as the primary collocation points.

We assume that for every e ∈ ET , there exist two points xe,1 and xe,2 in set ΣT such that the
following two conditions are held [33].

(C1) If te,1 = xe,1 − xT , te,2 = xe,2 − xT , and θe,i, i = 1, 2, is the angle between te,i and the
co-normal vector `e = K(xe)ne (see Fig. 1), then

θe,1 < π, θe,2 < π and θe,1 + θe,2 < π. (6)

(C2) The vectors te,i and `e satisfy

te,1 × `e 6 0 and te,2 × `e > 0. (7)

In simple words, the co-normal vector `e is assumed to lie between vectors te,1 and te,2, as
shown in Fig. 1, and all angles are less than π. If conditions (6) and (7) are violated, we may
extend the set ΣT by adding neighbors of already included collocation points.
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Lemma 3.1 Under assumptions (6) and (7), there exist non-negative αe and βe such that

1

|`e|
`e =

αe

|te,1|
te,1 +

βe

|te,2|
te,2. (8)

Moreover,

αe =
sin θe,2

sin(θe,1 + θe,2)
and βe =

sin θe,1

sin(θe,1 + θe,2)
.

Proof. The formulas for αe and βe follow from trigonometric observations. The non-negativity
of αe and βe follows from assumptions (6) and (7). 2

3.2 Nonlinear two-point diffusion flux approximation for an interior edge

In this section, we consider the diffusion flux on an interior edge e ∈ EI

qe,d =
1

|e|

∫
e

−K∇c ds.

We denote by T+ and T− the cells that share e and assume that ne is outward for T+ and T = T+.
Let x± (or xT±) be the collocation point in T±, Ke ≡ K(xe) and C± (or CT±) be the discrete
concentrations in T±.

Using definition of the directional derivative,

∂c

∂`e

|`e| = ∇c · (Ke ne),

and Lemma 3.1, we note that

qe,d · ne = −(1 +O(|e|)) |`e|
|e|

∫
e

∂c

∂`e

ds and
∫

e

∂c

∂`e

ds =

∫
e

(
αe

∂c

∂te,1

+ βe
∂c

∂te,2

)
ds. (9)

Replacing derivatives along directions te,1 and te,2 by finite differences, we get∫
e

∂c

∂te,i

ds = |e|
(
Ce,i − CT

|xe,i − xT |
+O(|xe,i − xT |)

)
, i = 1, 2. (10)

Note that this formula is exact for linear concentrations. If xe,i is the secondary collocation
point, we use formula (33) or (34) for Ce,i. Using the finite difference approximations (10) in
(9), we get the following discrete diffusive flux:

qh
e,d · ne = −|`e|

(
αe

|te,1|
(Ce,1 − CT ) +

βe

|te,2|
(Ce,2 − CT )

)
. (11)

At the moment, this flux involves three rather than two concentrations. To derive a two-point
flux approximation, we consider polygon T− and derive another approximation of the same flux
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through edge e. To distinguish between T+ and T−, we add subscripts ± and omit subscript e.
Since ne is the inward normal vector for T−, we have to change sign of the right-hand side:

qh
±,d · ne = ∓|`e|

(
α±
|t±,1|

(C±,1 − C±) +
β±
|t±,2|

(C±,2 − C±)

)
, (12)

where α± and β± are given by Lemma 3.1 and C±,i denotes concentration at collocation point
x±,i from ΣT± .

We define a new flux as a linear combination of two fluxes (12) with non-negative weights µ±:

qh
e,d · ne = µ+ qh

+,d · ne + µ− qh
−,d · ne

= µ+|`e|
(

α+

|t+,1|
+

β+

|t+,2|

)
C+ − µ−|`e|

(
α−
|t−,1|

+
β−
|t−,2|

)
C−

− µ+|`e|
(

α+

|t+,1|
C+,1 +

β+

|t+,2|
C+,2

)
+ µ−|`e|

(
α−
|t−,1|

C−,1 +
β−
|t−,2|

C−,2

)
.

(13)

The first requirement for the weights is to cancel the terms in the last row of (13) which results
in a two-point flux formula. The second requirement is to approximate the true flux. These
requirements lead us to the following system:−µ+d+ + µ−d− = 0,

µ+ + µ− = 1,
(14)

where

d± = |`e|
(

α±
|t±,1|

C±,1 +
β±
|t±,2|

C±,2

)
. (15)

Since coefficients d± depend on both geometry and concentration, so do weights µ±. Thus, the
resulting two-point flux approximation is nonlinear.

Remark 3.1 Note that the concentration C+,i (resp., C−,i) may be defined at the same collo-
cation point as C− (resp., C+). In this case the terms to be canceled are changed. By doing so,
we recover the classical linear scheme for square meshes with the 4-1-1-1-1 stencil. A similar
conclusion can be drawn for centroidal Voronoi meshes. To simplify the presentation, we shall
not consider this and similar special cases.

The solution of (14) can be written explicitly. In all cases, d± > 0 for non-negative concentra-
tions. If d± = 0, we set µ+ = µ− = 1

2
. Otherwise,

µ+ =
d−

d− + d+

and µ− =
d+

d− + d+

. (16)

Thus, the weights µ± are non-negative. Substituting this into (13), we get the two-point flux

qh
e,d · ne = D+

e CT+ −D−e CT− (17)
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with coefficients
D±e = µ±|`e|(α±/|t±,1|+ β±/|t±,2|). (18)

Remark 3.2 Although formula (11) is invariant with respect to the addition of a constant func-
tion, the discrete flux (17) is defined correctly only for non-negative concentrations. Analysis
below requires to extend definition of the discrete diffusive flux to negative concentrations. It
can be done by adding the smallest positive constant to all concentrations in (13) that makes
them non-negative.

3.3 Nonlinear advection flux on interior edges

In this section we consider the advection flux on an interior edge e ∈ EI ,

qe,a =
1

|e|

∫
e

cv ds,

and its nonlinear upwind approximation

qh
e,a · ne = v+

e RT+(xe) + v−e RT−(xe), (19)

where
v+

e =
1

2
(ve + |ve|), v−e =

1

2
(ve − |ve|), ve =

1

|e|

∫
e

v · ne ds,

RT is a linear reconstruction of the concentration over cell T which depends on the concentra-
tion values from neighboring cells.

On each cell T we define the linear reconstruction

RT (x) =

CT + LTgT · (x− xT ), x ∈ T,

0, x /∈ T,
(20)

where gT denotes the gradient of the least-square linear reconstruction, and LT is a slope limit-
ing operator. The vector gT is recovered from values Ck collocated at points xk from a set Σ̃T

which is defined as follows. First, the set Σ̂T is defined by eliminating the secondary collocation
points xe, e ∈ Eout

B , from ΣT . Second, we set Σ̃T = Σ̂T and extend it if the least-square system
is degenerate or ill-conditioned. More precisely, if Σ̃T = {xT ,xT ′}, we add to Σ̃T the elements
of Σ̂T ′ other than xT . If Σ̃T = {xT ,xT ′ ,xT ′′} and area of the triangle with vertices xT , xT ′ , xT ′′

is less than 10−3|T |, we add to Σ̃T the elements of Σ̂T ′ and Σ̂T ′′ other than xT . Then, the vector
gT is defined as the minimizer of the least-square functional

JLS(gT ) = min
g∈<2

∑
xk∈Σ̃T

[CT + g · (xk − xT )− Ck)]2. (21)

By construction, we ensure the following result.

Lemma 3.2 The problem (21) has a unique solution.

9



The slope limiting operator LT is introduced to avoid non-physical extrema. The modified slope
LTgT must result in linear reconstruction that satisfies the following restrictions at collocation
points xk ∈ Σ̂T :

min{CT , C1, . . . , CN(Σ̂T )} 6 CT + LTgT · (xk − xT ) 6 max{CT , C1, . . . , CN(Σ̂T )}. (22)

Additionally, vector LTgT must meet the following restrictions at points xe on edges e ∈ ET
where ve > 0:

±v±e (CT + LTgT · (xe − xT )) > 0, e ∈ ET . (23)

This condition guarantees correct sign of the advective flux. Finally, the reconstructed solution
must be bounded from below at the secondary collocation points on the outflow boundary:

min{CT , C1, . . . , CN(Σ̂T )} 6 CT + LTgT · (xe − xT ), e ∈ ET ∩ Eout
B . (24)

These restrictions were designed to bring as small as possible changes of the reconstructed
least-square slope gT . Note also that by virtue of (20), any change of gT will preserve the mass
on T and by virtue of (22), LTgT ≡ 0 in local minima and maxima.

We define the action of the slope limiting operator, LTgT , as the solution of the constrained
minimization problem

JSL(LTgT ) = min
g′satisfies (22),(23),(24)

JSL(g′) (25)

where the deviation functional JSL is

JSL(g′) =
1

2

∑
xk∈Σ̃T

|(g′ − gT ) · (xk − xT )|2.

Lemma 3.3 Minimization problem (25) has a unique solution.

Proof. A solution to problem (25) does exist, since the constant reconstruction g′ = (0, 0)T

satisfies (22), (23) and (24). However, it does not provide the minimum ofJSL(g′). The problem
(25) reduces to a problem of linear programming [28]: given a point ξg on a plane and a convex
polygon P, find

ξ = arg min
ξ′∈P
|ξ′ − ξg|. (26)

Indeed, our restrictions generate a set of strips and half-planes whose intersection is a convex
polygon P. If ξg 6∈ P, the solution ξ is the orthogonal projection of ξg on ∂P which is unique.
2

Using (19) and (20), we represent the advective flux as the sum of a linear part (the first-order
approximation) and a nonlinear part (the second-order correction):

qh
e,a · ne = A+

e C+ − A−e C−, (27)

where
A±e = ±v±e (1 + L±g± · (xe − x±)C−1

± ) (28)
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and subscript ± stands for T±.

We note that the coefficients A±e are non-negative for positive concentrations. If CT = 0 in a
cell T then LT becomes the zero matrix and A±e = ±v±e .

3.4 Fluxes on boundary edges

Let us consider a Robin boundary edge e ∈ ER
B . The total flux through this edge is

qh
e · ne = ḡR,e|e|, (29)

where ḡR,e is the mean value of gR on edge e. Despite that this flux is given, there may be diffu-
sive fluxes (13) that use the concentration Ce. Thus, an independent equation for concentration
Ce is needed. In the subsequent discussion, it may be convenient to think about e as the cell with
zero area. Let T be the cell with edge e. Replacing C+ and C− with CT and Ce, respectively,
we get

qh
e,d · ne = D+

e CT −D−e Ce, (30)

where coefficients D±e are given by (18).

The approximation of the advective flux adopts formula (27):

qh
e,a · ne = A+

e CT . (31)

Thus, the equation for the total flux is

(qh
e,d + qh

e,a) · ne = ḡR,e|ne| e ∈ ER
B . (32)

Substituting (30) and (31) in (32), we get the required equation for Ce:

A+
e CT +D+

e CT −D−e Ce = ḡR,e|ne|, (33)

where coefficientsD+
e ,D−e and A+

e are non-negative for positive concentrations. Since ḡR,e 6 0
then Ce is non-negative if CT is non-negative.

Let us consider a Dirichlet boundary edge e ∈ ED
B . Let T be again the cell containing this edge.

The equation for concentration is trivial,

Ce = ḡD,e =
1

|e|

∫
e

gD ds. (34)

The approximation of the diffusive flux is given by formula (30). The approximation of the
advective flux depends on velocity direction on edge e. If e ∈ Eout

B , the approximation adopts
formulas (31) and (28). If e ∈ E in

B , we use

qh
e,a · ne = −A−e , (35)
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where
A−e = − 1

|e|

∫
e

gDv · ne ds > 0. (36)

4 Discrete system and monotonicity analysis

For every T in T , the cell equation (4) is∑
e∈ET

χ(T, e) qh
e · ne =

∫
T

f dx, (37)

where χ(T, e) is either 1 or -1 depending on mutual orientation of normal vectors ne and nT .
Substituting two-point flux formula (5) with non-negative coefficients

M±
e = D±e + A±e

given by (18) and (28) into (37), and using equations (33) and (34) to eliminate boundary con-
centrations, we get a nonlinear system of NT equations

M(C)C = F(C), (38)

where C is the vector of discrete concentrations at the primary collocation points. The matrix
M(C) is assembled from 2× 2 matrices

Me(C) =

 M+
e (C) −M−

e (C)

−M+
e (C) M−

e (C)

 (39)

for the interior edges and 1× 1 matrices Me(C) = M+
e (C) for Dirichlet edges. The right-hand

side vector F(C) is generated by the source and the boundary data:

FT (C) =

∫
T

f dx+
∑

e∈ED
B ∩∂T

M−
e (C)ḡD,e −

∑
e∈ER

B∩∂T

|e|ḡR,e, ∀T ∈ T . (40)

For f(x) > 0, gD > 0 and gR 6 0 the components of vector F are non-negative. We use the
Picard iterations to solve the nonlinear system (38) (see Algorithm 1).

The linear system in Step 8 with the non-symmetric matrix M(Ck) is solved by the Bi-Conjugate
Gradient Stabilized (BiCGStab) method [29] with the second-order ILU preconditioner [14].
The BiCGStab iterations are terminated when the relative norm of the residual becomes smaller
than εlin.

The next theorem shows that the solution to (38) is non-negative provided that it exists.

Theorem 4.1 Let ΓR = ∅ (ED
B ≡ EB), f > 0 in Ω, gD > 0 on ΓD ≡ ∂Ω and the solution C to

(38) exist. Then C > 0.
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Algorithm 1 Generation and solution of nonlinear system (38)

1: For each interior edge e ∈ EI shared by elements T± find vectors t±,1, t±,2 satisfying
conditions (6) and (7). Find similar vectors for boundary edges.

2: Select an initial vector C0 with non-negative entries and a small value εnon > 0.
3: for k = 0, . . . , do
4: Calculate concentrations Ce at the secondary collocation points on edges e ∈ EB using

(33),(34).
5: Assemble the global matrix M(Ck) from the edge-based matrices Me(C

k). Use for-
mulas (18) with (15), (16), and (28) to form Me(C

k).
6: Calculate the right-hand side vector F(Ck) using (40).
7: Stop if ‖M(Ck)Ck − F(Ck)‖ 6 εnon ‖M(C0)C0 − F(C0)‖.
8: Solve M(Ck)Ck+1 = F(Ck).
9: end for

Proof. The proof is by contradiction. Let us consider the cell T with the smallest concentration
CT and assume that CT < 0. Let T = T+ in the flux formulas. Since CT is minimal,RT ≡ CT .
By adding and subtracting v−e CT , we get∑

e∈ET

qh
e,a · ne = CT

∑
e∈ET

ve +
∑

e∈ET \Ein
B

v−e (RT ′e(xe)− CT ) +
∑

e∈ET∩Ein
B

v−e (ḡD,e − CT ).

Therefore, from (37) we derive

−CT

∑
e∈ET

ve+

∫
T

f dx−
∑
e∈ET

qh
e,d ·ne−

∑
e∈ET \Ein

B

v−e (RT ′e(xe)−CT )−
∑

e∈ET∩Ein
B

v−e (ḡD,e−CT ) = 0.

(41)
We have ∑

e∈ET

ve =

∫
∂T

v · ne ds =

∫
T

div(v) dx > 0,

and, by assumption,
CT

∑
e∈ET

ve 6 0.

Since CT is minimal, it holds RT ′e(xe) > CT , and since CT < 0, it holds ḡD,e > CT . Let C̃ be
a vector with non-negative entries obtained by adding positive constant −CT to every entry of
C. For e ∈ ET , we have

qh
e,d(C̃) · ne = D+

e C̃T −D−e C̃T ′e = −D−e C̃T ′e 6 0.

As explained in Remark 3.2, the discrete diffusive flux for C is equal to that for C̃. Therefore,
qh

e,d · ne 6 0 and therefore ∑
e∈ET

qh
e,d · ne 6 0.

13



By virtue of v−e 6 0 we conclude that all the terms in (41) are non-negative and must be equal
to zero. Thus,

∑
e∈ET

qh
e,d · ne = 0 and CT = min

e∈ET
{CT ;CT ′e}. This implies

0 =
∑
e∈ET

qh
e,d(C̃) · ne = −

∑
e∈ET

D−e C̃T ′e

which means CT ′e = CT for all e ∈ ET .

Therefore, instead of T we can consider any neighboring cell T ′e. Since T is edge-connected, we
conclude that C is constant on T . Considering a cell T with edge e ∈ EB, from ḡD,e − CT = 0,
we get that this constant is non-negative. This contradicts our assumption. 2

Let us show that the matrix M(Ck) is the M-matrix provided that Ck > 0. Our derivation
shows that coefficients M±

e (Ck) are positive. Thus, all diagonal entries of matrix M(Ck) are
positive and all off-diagonal entries of M(Ck) are non-positive. The structure of edge-based
matrices (39) implies that each column sum in Me(C

k) is non-negative. Moreover, for ele-
ments with Dirichlet edges, the corresponding column sum is strictly positive. For a connected
mesh, matrices M(Ck) and MT (Ck) are irreducible since their directed graphs are strongly
connected. Under the above conditions, the well known linear algebra result [30] implies that
matrix MT (Ck) is the M-matrix and all entries of (MT (Ck))−1 are positive. Since the inverse
and transpose operations commute, (MT (Ck))−1 = (M−1(Ck))T , we conclude that M(Ck) is
monotone. Since diagonal entries of M(Ck) are positive and off-diagonal entries are negative,
it is also the M-matrix. Therefore, we proved the following theorem.

Theorem 4.2 Let f > 0, gD > 0, gR 6 0 and ΓD 6= ∅ in (1). If C0 > 0 and linear systems in
the Picard method are solved exactly, then Ck > 0 for k > 1.

Remark 4.1 The theorem holds true also for linear advective fluxes:

qh
e,a · ne = A+

e C+ − A−e C−, A±e = ±v±e .

5 Numerical experiments

5.1 Implementation issues

In all experiments, we set ΓR = ∅. For advection-dominated problems, this helps to find more
analytical solutions such that the right-hand side vector is non-negative, F (C) > 0, for any
non-negative C.
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5.1.1 Errors

We use the following discrete L2-norms to evaluate discretization errors for the concentration c
and the flux q:

εc
2 =


∑
T∈T

(c(xT )− CT )2 |T |∑
T∈T

(c(xT ))2 |T |


1/2

and εq
2 =


∑

e∈EI∪EB

(
(qe − qh

e ) · ne

)2 |Se|∑
e∈EI∪EB

(qe · ne)
2 |Se|


1/2

,

where |Se| is a representative area for edge e. More precisely, |Se| is the arithmetic average
of areas of mesh cells sharing the edge. In convergence studies the nonlinear iterations are
terminated when the reduction of the initial residual norm becomes smaller then εnon = 10−8.
The convergence tolerance for the linear solver is set to εlin = 10−12.

5.1.2 Meshes

The numerical tests are performed on three sequences of uniform meshes, two sequences of
distorted structured meshes, and one sequence of polygonal meshes. The uniform meshes are
square meshes {M1} and two types of triangular meshes produced by splitting each square cell
into two triangles by the north-east {M2} or north-west diagonal {M3}, as shown in Fig. 2.

M1 M2 M3

Fig. 2. Examples of three types of uniform meshes.

The distorted structured meshes include triangular {M4} and quadrilateral {M5} meshes. The
distorted mesh is constructed from the uniform mesh with the mesh size h by random distortion
of internal nodes (x, y):

x := x+ αξxh, y := y + αξyh, (42)

where ξx and ξy are random variables with values between -0.5 and 0.5 and α ∈ [0, 1] is the
degree of distortion. To avoid mesh tangling, we set α = 0.6 for both types of meshes. It is
pertinent to emphasize that the distortion is performed on each refinement level. A polygonal
mesh from sequence {M6} is a dual mesh for a smoothly transformed uniform triangular mesh.
Examples of these meshes are shown in Fig. 3. For each space resolution, the quadrilateral and
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polygonal meshes have roughly the same number of cells. The corresponding triangular meshes
have twice more cells.

M4 M5 M6

Fig. 3. Examples of two types of distorted structured meshes and a polygonal mesh.

5.2 Anisotropic diffusion with advection

5.2.1 Convergence study

The convergence study is performed for a smooth solution on mesh sequences {M4}, {M5}
and {M6}. A sequence of distorted meshes is the most challenging test for a numerical scheme
due to fix amount of random noise in position of mesh nodes. Let Ω = (0, 1)2, and the exact
solution, velocity field and anisotropic diffusion tensor be as follows

c(x, y) = x cos(0.5πy), v = (1,−1)T , K =

 10 0

0 0.1

 .

The forcing term f and the Dirichlet boundary data gD are set accordingly to the exact solution.
Table 1 shows the relative L2 norms of the errors. The convergence rate for the concentration is
close to the second-order while the convergence rate for the flux is higher than the first-order.
It is interesting to note that the order of convergence on quadrilateral and polygonal meshes
is better than on triangular ones. This can be explained by the fact that a greater number of
neighboring cells allows one to approximate a diffusion flux more accurately. This is one of the
advantages of usage of polygonal meshes in the discretization.

5.2.2 Monotonicity test

The monotonicity study is performed of mesh sequences {M1}, {M2} and {M3} for a problem
with anisotropic solution due to highly anisotropic diffusion tensor. Such a problem is a chal-
lenging task for a wide range of discretization methods, e.g. [19,22], which may significantly vi-
olate the discrete maximum principle and produce a numerical solution with non-physical oscil-
lations. We consider problem (1) in the unit square with a square hole, Ω = (0, 1)2/[4/9, 5/9]2,
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h {M4} {M5} {M6}

εC
2 εq

2 εC
2 εq

2 εC
2 εq

2

1/32 7.17e-04 3.29e-03 3.28e-04 2.28e-03 8.79e-04 4.78e-03

1/64 2.69e-04 1.23e-03 7.10e-05 8.65e-04 2.73e-04 1.73e-03

1/128 9.82e-05 4.82e-04 2.01e-05 3.62e-04 7.33e-05 6.03e-04
Table 1
Convergence analysis for diffusion-dominated problems.

so that the boundary of Ω consists of two disjoint parts as shown in Fig. 4. We set f = 0, gD = 0
on Γ0, gD = 2 on Γ1, v = (700, 700)T and take the following anisotropic diffusion tensor K:

K = R(−θ)

 k1 0

0 k2

R(θ), R(θ) =

 cos θ sin θ

− sin θ cos θ

 , (43)

where k1 = 1000, k2 = 1 and θ = −π/6.

Γ
0

Γ
1

v

k2

k1

M1 M2 M3

Fig. 4. Top panel: A sketch of the computational domain Ω with the primary directions of the diffusion
tensor and the velocity field. Bottom panel: Solutions calculated with the nonlinear FV method on three
different meshes.

According to the maximum principle for elliptic PDEs, the exact solution should be between
0 and 2. Solutions computed with the nonlinear FV method on triangular and square meshes
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are non-negative everywhere in the computational domain (see the color bar in Fig. 4). The
solution profile on meshes M1 and M3 is wider than on mesh M2 since the mesh size along
the velocity direction is twice larger. It is pertinent to notice that our approach guarantees only
the nonnegativity of the numerical solution. It means that small overshoots may occur and were
observed in [23]. We note that the solution calculated with the lowest-order Raviart-Thomas
MFE method is negative on both triangular meshes over large regions, even when v = (0, 0)T

[22,23].

5.3 Advection dominated problems

5.3.1 Convergence study for smooth solutions

Firstly, we study the accuracy and the convergence order for a problem with a smooth solution.
The convergence studies are performed on mesh sequences {M4}, {M5} and {M6}. Let Ω =
(0, 1)2 and the exact solution, constant velocity field and anisotropic diffusion tensor be as
follows:

c(x, y) = x cos(0.5πy), v = (1,−1)T , K = 10−5

 10 0

0 0.1

 .

The forcing term f and the Dirichlet boundary data gD are set accordingly to the exact solution.
Table 2 shows the relative L2 norms of the errors. For all types of meshes we observe the
tendency to the second-order convergence rate for the concentration and the rate higher than the
first-order for the flux.

h {M4} {M5} {M6}

εC
2 εq

2 εC
2 εq

2 εC
2 εq

2

1/32 3.04e-03 3.78e-03 7.49e-04 7.55e-04 1.19e-03 9.86e-04

1/64 9.77e-04 1.23e-03 2.89e-04 3.31e-04 3.86e-04 3.67e-04

1/128 3.24e-04 4.32e-04 7.09e-05 8.12e-05 1.20e-04 1.12e-04
Table 2
Convergence analysis for the advection-dominated problem and the smooth solution.

5.3.2 Convergence study for solutions with boundary layers

Secondly, we study the accuracy and the convergence order for a problem with an exponential
boundary layer. We consider the problem which also was studied in [24]. The exact solution,
constant velocity field and isotropic diffusion tensor are defined by

c(x, y) =

(
x− exp

(
2(x− 1)

ν

))(
y2 − exp

(
3(y − 1)

ν

))
, v = (2, 3)T K = ν I,
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where ν characterizes the thickness of the boundary layer in the top-right corner of the unit
square (0, 1)2. For the advection-dominated problem, we set ν = 10−4. The goal of our nu-
merical tests is to demonstrate that the nonlinear FV method has good convergence properties
and produces the numerical solution without oscillations in a subdomain outside the boundary
layer. More precisely, the errors are computed in the domain (0, 0.8)2. The results presented in
Table 3 demonstrate the second-order convergence rate for the concentration and the first-order
for the flux on all types of considered meshes. Moreover, in all numerical tests the numerical
solutions vary between 0 and 1.

h {M4} {M5} {M6}

εC
2 εq

2 εC
2 εq

2 εC
2 εq

2

1/32 1.07e-03 3.85e-04 1.91e-03 1.66e-03 4.97e-03 4.43e-03

1/64 2.74e-04 1.03e-04 4.94e-04 4.32e-04 1.31e-03 1.13e-03

1/128 6.83e-05 2.62e-05 1.27e-04 1.13e-04 3.30e-04 2.82e-04
Table 3
Convergence analysis for the advection-dominated problem and the solution with the boundary layer.

5.3.3 Monotonicity test

In this subsection we consider the advection-dominated problem with discontinuous Dirichlet
boundary data. The discontinuity produces an internal shock in the solution, in addition to ex-
ponential boundary layers. This is a popular test case for the discretization schemes designed
for advection-dominated regimes, see [12] and [13]. Following [13], we set

v =
(

cos
π

3
,− sin

π

3

)
, K = νI, ν = 10−8.

The Dirichlet boundary conditions are imposed as follows:

c(x, y) =

 0 if x = 1 or y 6 0.7,

1 otherwise

The exact solution has a boundary layer next to the lines y = 0, x = 1 and has an internal layer
along the streamline passing through the point (0, 0.7).

The computations were performed on meshes M1, M2, M3 and M6 with the effective mesh
parameter h = 1/64, so that the number of degrees of freedom for concentration is 4096 on
the square and polygonal meshes and 8192 on the triangular meshes. The Péclet number is
Pe = 7.815. According to Theorems 1 and 2, the numerical solution must be non-negative. The
numerical solutions for the four meshes are shown in Fig. 5.

In order to measure quality of the numerical solution, the authors of [13] have proposed several
estimates which quantify solution oscillations and smearing effects caused by a discretization
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Mesh M1 Mesh M2

Mesh M3 Mesh M6

Fig. 5. Monotonicity test: the numerical solutions vary between 0 and 1.

scheme:

oscmin
int ≡

 ∑
(x,y)∈Ω1

(min{0, ch(x, y)})2

1/2

, (44)

oscmax
int ≡

 ∑
(x,y)∈Ω1

(max{0, ch(x, y)− 1})2

1/2

, (45)

oscexp ≡

 ∑
(x,y)∈Ω2

(max{0, ch(x, y)− 1})2

1/2

, (46)
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smearexp ≡

 ∑
(x,y)∈Ω2

(min{0, ch(x, y)− 1})2

1/2

, (47)

smearint ≡ x2 − x1, (48)

where

Ω1 = {(x, y) ∈ Ω : x 6 0.5, y > 0.1}, Ω2 = {(x, y) ∈ Ω : x > 0.7},
x1 = min

xT∈Ω3,C(xT )>0.1
xT and x2 = max

xT∈Ω3,C(xT )60.9
xT ,

with Ω3 denoting the cell strip in the vicinity of the line y = 0.25, Ω3 = {T ∈ T : xT =
(xT , yT ), |yT − 0.25| <= |T |1/2}. In the case of mesh M1 the width of this strip is equal to 2h.

The estimates (44) and (45) characterize the values of undershoots and overshoots in Ω1, cor-
respondingly. The estimate (46) quantifies oscillations near the boundary layer in Ω2 whereas
the estimates (47) and (48) measure the width of the boundary layer and the internal shock. In
the continuous solution these estimates depend on the diffusion process only, so they are much
smaller than the considered mesh size. Small values of estimates (44)-(48) characterize almost
non-oscillatory and almost non-diffusive discrete solution.

The results obtained by the nonlinear FV method are shown in Table 4. They are competitive
with the best results presented in review [13]. The increase of the internal shock width on the
polygonal mesh is caused by non-uniformity of mesh density. The cells near the shock are larger
than the average cell size.

Mesh oscmin
int oscmax

int oscexp smearint smearexp

M1 0 2.22e-12 1.01e-11 7.81e-02 2.13e-05

M2 0 2.43e-07 7.54e-11 9.90e-02 4.49e-05

M3 0 1.29e-11 6.27e-06 4.69e-02 4.36e-05

M6 0 5.71e-08 1.64e-11 1.13e-01 8.41e-05
Table 4
The quantities that characterize the quality of the numerical solution for the problem described in sub-
section 5.3.3

5.4 Nonlinear iteration

In the last group of tests we investigate the convergence of nonlinear iterations in Algorithm 1.
In all numerical experiments presented above, the Picard method was terminated when the dis-
crete L2 norm of the nonlinear residual was reduced by factor εnon = 10−8. Each iteration of
this method is computationally expensive; therefore, reduction in the number of iterations will
greatly reduce the overall cost. The goal of this study is to demonstrate that the numerical solu-
tion is sufficiently accurate when the nonlinear system (38) is solved with much larger tolerance
than 10−8.
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(a) (b)

Fig. 6. The convergence of the Picard method:(a) diffusion-dominated problem from subsection 5.2.1,
(b) advection-dominated problem from subsection 5.3.2.

(a) (b)

Fig. 7. The convergence study for different values nonlinear tolerance εnon:(a) diffusion-dominated prob-
lem from subsection 5.2.1, (b) advection-dominated problem from subsection 5.3.2.

We consider the problem with the smooth solution described in subsection 5.2.1 and the prob-
lem with the exponential boundary layer described in subsection 5.3.2. Both of these problems
are solved on a sequence of distorted quadrilateral meshes {M5}. In Fig. 6a,b, the relative L2

error for concentration and the relative Euclidean norm of the nonlinear residual are plotted
for each iteration. The error stabilizes much earlier than the nonlinear residual reaches the pre-
scribed tolerance εnon = 10−8. This difference is even more distinct in the advection-dominated
problem. In Fig. 7a,b, the relative L2 error for concentration is plotted against the mesh size
for three different values of the convergence tolerance εnon. These results demonstrate that the
second-order convergence can be achieved with much larger tolerance and, respectively, with
much smaller number of nonlinear iterations. For example, only 10 nonlinear iterations are re-
quired to achieve the second-order convergence in the problem with the exponential boundary
layer. For the problem with the smooth solution, gradual decrease of εnon with the mesh size is
required to achieve the second-order convergence. Respectively, the number of nonlinear itera-
tions increases from 20 (h = 1/32) to 40 (h = 1/128).
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We noticed that the Picard method may not converge up to the prescribed tolerance in some
cases, especially on highly distorted meshes. In these cases, a relaxed version of the Picard
method demonstrates much more robust behavior. The iterative process is reformulated as fol-
lows:

M(Ck)C̃k+1 = F(Ck), Ck+1 = Ck + ωk(C̃k+1 −Ck),

where ωk is the damping factor, 0 < ωk 6 1. If ωk ≡ 1, we recover the method described in
Algorithm 1. The choice of the damping factor {ωk} is determined by the balance between the
robustness and the convergence speed of the iterative process. Our experience shows that the
choice ωk = 0.75 provides robust behavior for the considered problems. A dynamic choice of
the damping factor will be analyzed in the future.

Conclusion

We developed and analyzed the new monotone finite volume method for the advection-diffusion
equation with full anisotropic diffusion tensor. We proved that this method guarantees non-
negativity of the numerical solution if the source term and the initial guess are non-negative.
The numerical scheme does not use any interpolation to the mesh nodes. The method is appli-
cable to polygonal meshes and full anisotropic diffusion tensors with continuous components.
Generalization of the method to the case of heterogeneous diffusion coefficients can be done
by following the path described in [9,23]. The numerical experiments demonstrate the second-
order convergence rate for the concentration and the first-order convergence rate for the flux (a)
on randomly distorted meshes, (b) for problems with highly anisotropic coefficients and (c) for
advection-dominated and diffusion-dominated problems.
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