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The paper develops a solver based on a conforming finite element method for a 3D–1D coupled incom- 
pressible flow problem. New coupling conditions are introduce d to ensure a suitable bound for the cumu- 
lative energy of the model. We study the stability and accuracy of the discretization method, and the 
performa nce of some state-of-the-art linear algebraic solvers for such flow configurations. Motivated 
by the simulation of the flow over inferior vena cava (IVC) filter, we consider the coupling of a 1D fluid
model and a 3D fluid model posed in a domain with anisotropic inclusions. The relevance of our approach 
to realistic cardiovascular simulations is demonstrated by computing a blood flow over a model IVC filter.
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1. Introductio n

Coupling a 3D fluid flow model and a system of hyperbolic 
equations posed on a 1D graph is a well established approach for 
numerical simulations of blood flows in a system of vessels [32].
Such a geometric multiscale strategy is particular ly efficient, when 
the attention to local flow details and the qualitative assessme nt of
global flow statistics are both important. The relevance to cardio- 
vascular simulations and challenging mathematical problems of
coupling parabolic 3D and hyperbolic 1D equations put 3D–1D
flow problems in the focus of intensive research. Thus, the coupling 
of a 3D fluid/structure interaction problem with a reduced 1D
model merged to outflow boundary, which acts as an absorbing de- 
vice, was studied in [15]. The coupling of a 3D fluid problem with 
multiple downstream 1D models in the context of a finite element 
method was considered in [38]. In [33], a system of a 3D fluid/
structure interaction problem and a 1D finite element method 
model of the whole arterial tree was implemented to model the 
carotid artery blood flow; and in [6] a unified variation al formula- 
tion for multidimen sional models was introduced. A splitting 
method, extending the pressure -correction scheme to 3D–1D cou- 
pled systems, was studied in [26].
In most of these studies, the 3D model was a generic fluid-elas-
ticity or rigid fluid model, while numerica l validations were com- 
monly done for cylindric type 3D domains (with rigid or elastic 
walls); several authors considered geometries with bifurcation 
[38,33] or constrained geometries (modeling a stenosed artery)
[6]. More complicated geometri es occur in simulations of blood 
flows, if one is interested in modeling the effect of endovascular 
implants , such as inferior vena cava (IVC) filters. In numerical sim- 
ulations, a part of a vessel with an intravenous filter leads to the 
computati onal 3D domain with strongly anisotropi c inclusions. A
downstre am flow behind the implant may exhibit a complex struc- 
ture with traveling vortices, swirls, and recirculation regions (the
latter may occur if plaque is captured by the filter). Moreover,
the IVC blood flow is strongly influenced by the contraction of
the heart, and both forward (towards the heart) and reverse (from
the heart) flows occur within one cardiac cycle. Downstr eam cou- 
pling conditions for such flows may be a delicate issue. Thus, the 
flow over an IVC filter is an interesting and challenging problem 
for a 3D–1D flow numerical solver.

The coupling conditions of 3D and 1D fluid models and their 
propertie s were studied by several authors. Coupling conditions 
and algorithms based on subdomain iterations were introduced 
in [15], and the stability propertie s of each subproblem were ana- 
lyzed separately. The first analysis of two models together was 
done in [16]. In that paper, it was noted that if the Navier–Stokes
equation s are taken in the rotation form and suitably coupled with 
a 1D downstre am flow model, then one can show a bound for the 
joint energy of the system. It is, however, well known that using a
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finite element method for the rotation form of the Navier–Stokes
equations needs special care [22], and setting appropriate outflow
boundary conditions can be an issue. In the present paper, we
introduce an energy consistent coupling with a 1D model for the 
convection form of the Navier–Stokes equations. The joint energy 
of a coupled 3D–1D model is appropriate ly balanced and dissipates 
for viscous flows.

Handling highly anisotropic structures is a well-known chal- 
lenge in numerica l flow simulations and analysis. There are only 
a few computational studies addressing the dynamics of blood 
flows in vessels with implanted filters. Recently , Vassilevski et al.
[34] numerica lly approach ed the problem of intravenous filter
optimization using a finite-difference method on octree cartesian 
meshes to resolve the geometry of implants. In that paper, it was 
also discussed how the effect of an implant can be accounted in
a 1D model through a modification of a vessel wall state equation 
(see also [36,37] for the developmen t of this method for athero- 
sclerotic blood vessels). In the present paper, we take another ap- 
proach and locally resolve the full 3D model, while keeping the 
state equation unchanged. We report on a finite element method 
for modeling a 3D–1D coupled fluid problem, when the 3D domain 
has anisotropic inclusions. Naturally, this leads to meshes contain- 
ing possibly anisotropi c tetrahedra. We study the performance of
the finite element method both by considering the accuracy of
solutions and by monitoring the convergence of one state-of-the- 
art linear algebra solver for the systems of linear algebraic equa- 
tions to be solved on every time step of the method. We are inter- 
ested in the ability of the solver to predict such important statistics 
as the drag force experienced by an intravenous implant.

The remainder of the paper is organized as follows. In Section 2,
we review 3D and 1D fluid models and discuss coupling condition s.
The stability propertie s of the coupled model are also addresse d in
Section 2. Section 3 presents a time-stepping numerical scheme 
and an algebraic solver. In Section 4, we validate the 3D finite ele- 
ment solver and the coupled method by considering the bench- 
mark problem of a flow past a 3D cylinder and a problem with 
an analytical solution. The applicati on of the method to simulate 
a blood flow over a model IVC filter is given in Section 5. Numerical 
experiments were performed using the Ani3D finite element pack- 
age [40], which was used to generate tetrahedra subdivisions of 3D
domains, to build stiffness matrices, and to implement the linear 
algebra solvers described in Section 3.

2. The 1D–3D coupled model 

This section reviews 3D and 1D fluid models and describes the 
coupling of the models. In this study, the 3D model is assumed ‘rigid’.
2.1. The 3D model 

Consider a flow of a viscous incompress ible Newtonian fluid in a
bounded domain X � R3. We shall distinguish between the inflow
part of the boundary, Cin, the no-slip and no-penetrati on part (rigid
walls), C0, and the outflow part of the boundary, Cout. On the inflow
part we assume a given velocity profile. The outflow boundary con- 
ditions are defined by setting the normal stress tensor equal to a
given vector function /. Thus, the 3D model is the classical Na- 
vier–Stokes equations in pressure –velocity variables:
q @u
@t þ ðu � rÞu
� �

� mDuþrp ¼ 0 in X� ð0; T�;
divu ¼ 0

ujCin
¼ uin; ujC0

¼ 0;

m @u
@n� pn

� ���
Cout
¼ /:

8>>>>><>>>>>:
ð1Þ
Here n is the outward normal vector to @X. The system is also sup- 
plemente d with initial condition u ¼ u0 (divu0 ¼ 0) for t ¼ 0 in X.

We remark that the notion of ‘inflow’ and ‘outflow’ boundary is
used here and further in the text conventional ly, since the inequal- 
ities u � n < 0 or u � n > 0 are not necessarily pointwise satisfied on
Cin or Cout, respectively. In applications we consider, the mean flux,
u � n averaged in space and in time , is expected to be negative at Cin

and positive at Cout. However, for certain t 2 ½0; T�, the fluxR
CinðoutÞ

u � nds may take positive values at Cin (negative at Cout).
If the solution to (1) is sufficiently smooth and the inflow

boundary conditions are homogeneous , the following energy bal- 
ance holds:

q
2

d
dt
kuk2 þ mkruk2 þ

Z
Cout

q
2
juj2n� /

� �
� uds ¼ 0:

Here and in the rest of the paper, k � k denotes the L2ðXÞ norm. If one 
assumesZ

Cout

juj2u � nds P 0 8t 2 ½0; T�; ð2Þ

then solutions to (1) satisfy the a priori energy inequal ity and this 
opens possibilities for showin g partial well-posedn ess results. Even 
though, the assumption (2) was used for the purpose of analysis in
the literature on 3D–1D blood flow models (see [15,16]), it is hard 
to verify (2) for practical flows. Moreover, the inequal ity (2) no
longer holds if reverse flows occur, as, for example, happen s in
IVC [27,39].

2.2. The 1D model 

A one-dimens ional model can be derived from the Navier–
Stokes equations posed in a long axisymmetric elastic pipe by inte- 
grating over cross section, making some simplifying assumpti ons 
and considering integral average quantities as unknowns, see,
e.g., [1,32]. Let xðt; xÞ be the cross section of the pipe normal to
x; Sðt; xÞ is the area of xðt; xÞ and uðt;xÞ is the axial velocity. Intro- 
duce the averaged variables: the mean axial velocity �u and the 
mean pressure:

�uðt; xÞ ¼ S�1ðt; xÞ
Z

xðt;xÞ
uðt; xÞds; �pðt; xÞ ¼ S�1ðt; xÞ

Z
xðt;xÞ

pðt;xÞds:

We consider the model given by the following system of equation s
for unknow ns �u; �p; S:

@S
@t þ

@ðSuÞ
@x ¼ uðt; x; S; �uÞ

@�u
@t þ

@ð�u2=2þ�p=qÞ
@x ¼ wðt; x; S; �uÞ

�p� pext ¼ qc2
0f ðSÞ

8>><>>: for x 2 ½0;1�: ð3Þ

For initial conditio ns, the mean velocity and the cross section area 
are prescribed, �ujt¼0 ¼ u0; Sjt¼0 ¼ S0. Here pext is the external pres- 
sure, uðt; x; S; �uÞ is a function modeling the source or sink of the 
fluid, as may be required in hemodyn amic simulati ons, if a blood 
loss happens in a vessel. Further, we assume u ¼ 0 and pext ¼ 0,
so from now �p has the meaning of the difference between the fluid
pressure and the external pressure. The term wðt; x; S; �uÞ accounts
for external forces, such as gravity or friction. Follow ing [1,28], we
set

w ¼ �16m�ugðeSÞðeSd2Þ�1
; eS ¼ bS�1S: ð4Þ

Here m is the viscosity coefficient, d is the pipe diamete r, bS is the ref- 
erence area (in the hemodynam ic application s bS is the cross section 
area of a vessel at rest) and 

gðeSÞ ¼ 2; for eS > 1;eS þ eS�1; for eS 6 1:

(



Fig. 1. The schematic coupling of X3D and Xdown 
1D domains.

168 T.K. Dobroserdova, M.A. Olshanskii / Comput. Methods Appl. Mech. Engrg. 259 (2013) 166–176
The last equation in (3) relates the pressure to the cross section 
area. The function f is defined by the elasticity model of the pipe 
walls, c0 is the elasticity model paramete r. We use the one from 
[28]:

f ðSÞ ¼ expðSbS�1 � 1Þ � 1; for S > bS;
lnðSbS�1Þ; for S 6 bS:

(
ð5Þ

Other algebra ic defining relations linking the mean pressure and 
the cross section area are known from the literature, see, e.g.,
[32]. They are equally well suited for the purpose of this paper.

In [15], the authors derived the energy equality for the one- 
dimensional fluid model in Q ; S; �p variables, where Q ¼ S�u is the 
flux. Up to possibly different choices of wðt; x; S; �uÞ and f ðSÞ, the for- 
mulation in [15] is equivalent to (3). Written in terms of �u; S, and 
�p, the energy equality for (3) is (recall that we assumed u ¼ 0):

d
dt
E1DðtÞ � q

Z 1

0
Swðt; x; S; �uÞ �udt ¼ �S�uð�pþ q

2
�u2Þ
���1
0
; ð6Þ

with the energy functiona l

E1DðtÞ ¼
q
2

Z 1

0
S�u2dxþ qc2

Z 1

0

Z S

bS f ðsÞdsdx:

For f ðSÞ given in (5), the second term in the definition of E1DðtÞ is al- 
ways positive, making E1DðtÞ positive for all t > 0. The choice of
wðt; x; S; �uÞ in (4) ensures that the second term on the left-hand side 
of (6) is positive as well. Thus, for the homoge nous boundary con- 
ditions the energy of the 1D model dissipate s: d

dt E1DðtÞ < 0.
System (3) is hyperbolic and can be integrated along character- 

istics. To see this, we write (3) in the divergence form:

@V
@t
þ @FðVÞ

@x
¼ g;

with V ¼ fS; �ug; F ¼ fS�u; �u2

2 þ
�p
qg, g ¼ f0;wg. Denote by wi and ki

(i = 1,2) the left eigenvect ors and eigenv alues of the Jacobian 
A ¼ @F

@V. One finds

ki ¼
�uþ ð�1Þic0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S=bS expðS=bS � 1Þ

q
if S > bS

�uþ ð�1Þic0 if S 6 bS
8<: ; i ¼ 1;2;

and

wi ¼
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=bSÞ expðS=bS � 1Þ

q
; ð�1Þi

ffiffiffi
S
p� 	T

if S > bS
c0; ð�1ÞiS
� �T

if S 6 bS
8>><>>: ; i ¼ 1;2:

Thus, system (3) can be written in the characterist ic form:

wi
@V
@t
þ ki

@V
@x

� 	
¼ wig; i ¼ 1;2: ð7Þ

Under physiologi cal conditions in hemody namics, it holds �u < c0,
implying that the eigenvalu es ki have opposit e signs. Therefor e,
w1 is the incoming characterist ic from point x ¼ 1 and w2 is the 
incomin g characteris tic from point x ¼ 0. Two boundary conditio ns,
one at x ¼ 0 and one at x ¼ 1, are enough to close the system.
2.3. The coupling of 1D and 3D models 

We now consider two domains X3D and Xdown 
1D , as shown in

Fig. 1. In Xdown 
1D we pose the 1D fluid model and in X3D we pose 

the full three-dimens ional Navier–Stokes equation s. The one- 
dimensional domain Xdown 

1D is coupled to the downstream boundary 
of X3D.

There are several options to define the coupling condition s of
1D and 3D models, as discussed, for example, in [15]. One can 
ask for the continuity of the mean pressure, the mean axial veloc- 
ity, the flux, the normal cross section area, the averaged normal 
stress, or the entering characteri stic. In general, the continuity of
all these quantities cannot be satisfied simultaneou sly. A choice 
has to be made.

One common choice, see, e.g., [33,6], is to impose the continuity 
of the normal stress and the flux:

�m
@u
@n
þ pn

� 	����
Cout

¼ �pjx¼dn; ð8ÞZ
Cout

u � nds ¼ S�ujx¼d: ð9Þ

This choice is, however, known to be energy inconsist ent in the fol- 
lowing sense. Assume the homoge neous boundar y conditio ns on Cin

and the downstream end of Xdown 
1D . Then the cumulative energy bal- 

ance of the coupled model is

d
dt
ðE3DðtÞ þ E1DðtÞÞ þ mkruk2 þ

Z
Xdown 

1D

KmðSÞ�u2dx

¼
Z

Cout

m
@u
@n
� ðpþ q

2
juj2Þn

� 	
� udsþ S�uð�pþ q

2
�u2Þ
���
x¼d
; ð10Þ

with E3DðtÞ ¼ 1
2 kuk

2. KmðSÞ is a positive coefficient defined from (4).
Easy to see that for coupling conditio ns (8)–(9) the right hand side 
of (10) reduces to

q
2

Su3
���

x¼d
�
Z

Cout

juj2ðu � nÞds
� 	

:

In general , it is not clear if this quantity is non-posi tive and thus if
the cumulative energy is properly dissipate d, as it holds for the full 
3D Navier –Stokes equations with the Dirichlet homogen eous 
boundar y condition s. To circumv ent this inconsist ency, it was sug- 
gested in [16] to replace conditio n (8) by the continuity of so-called 
total stress:

�m
@u
@n
þ ðpþ q

2
juj2Þn ¼ ð�pþ q

2
�u2Þ
���

x¼d
n on Cout: ð11Þ

Condition (11) together with the continu ity of the flux, i.e. conditio n
(9), makes the right hand side of (10) equal to zero. Hence, the 
cumula tive energy dissipates. However, setting the total stress 
equal to a constant is not a consiste nt outflow conditio n for the sim- 
plest Poiseuille flow. Moreover, (11) is the natural boundar y condi- 
tion for the rotation form of the Navier–Stokes equation s. Using it
with the common convectio n or conservation forms leads to non- 
linear coupling conditions and often requires iterative treatment 
[7]. Although the rotation form is an intere sting altern ative to the 
standard conve ction form, it is still not a standard option in the 
existing softwa re and its use requires certain care [22,23].

The condition for the normal stress, as in (8), is the natural 
boundary condition for the commonly used convectio n and conser- 
vation forms of the Navier–Stokes equation s. Such a condition has 
been shown to be surprisin gly useful as outflow boundary condi- 
tion [19]. Thus, instead of keeping (9) and changing (8) to the total 
stress condition, we retain (8) and instead of (9) assume the conti- 
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nuity of the linear combination of the fluid flux and the energy 
flux:

�pðdÞ
Z

Cout

u � ndsþ q
2

Z
Cout

juj2ðu � nÞds ¼ ð�pS�uþ q
2

S�u3Þjx¼d: ð12Þ

One easily checks that the combination of (8) and (12) ensures the 
right-ha nd side of (10) equal to zero and thus the correct energy 
balance and energy inequal ity are valid as formulated in the follow- 
ing theorem .

Theorem 2.1. Consider the coupled 1D–3D fluid problem given by
(1), (3), (4), (5), and coupling conditions (8), (12). Assume the 
homogeneous boundary conditions uin ¼ 0 and �ujx¼e ¼ 0. Then a
sufficiently smooth solution satisfies the following energy decay 
property:

E3DðtÞ þ E1DðtÞ þ m
Z t

0
kruk2dt0 þ

Z t

0

Z
Xdown 

1D

KmðSÞ�u2dxdt0

¼ E3Dð0Þ þ E1Dð0Þ ð13Þ

for any t 2 ½0; T�. If w is defined in (4), then KmðSÞ ¼ 16mgðeSÞbSd�2
> 0.
Remark 2.1. Since �p has the meaning of the difference between 
fluid and external pressures, it can be negative. In this case, more 
than one value of �u may satisfy (12). To ensure that the coupled 
model is not defective, one has to prescribe a particular rule for 
choosing the root of the cubic Eq. (12). In our numerica l experi- 
ments, we take �u which is the closest to jCout j�1 R

Cout
u � nds.
Remark 2.2. The boundary condition (12) is the combination of
fluid and energy fluxes and so it does not guarantee to conserve 
the ‘mass’ of the entire coupled system. Although, we do not 
observe any perceptible generation or loss of mass in our numeri- 
cal experime nts, it does not necessarily mean that for all problems 
this effect should be negligible. Actually, one may consider any 
other linear combination of fluid and energy fluxes coupling on
3D–1D boundary to compromise between energy stability and 
mass conservation.

In practice, one may also be interested in coupling the 1D fluid
model to the upstream boundary of the 3D domain. Hence, we now 
consider three domains Xup

1D; X3D, and Xdown 
1D , as shown in Fig. 2. In

Xup
1D and Xdown 

1D the simplified 1D model is posed and in X3D the full 
three-dimens ional Navier–Stokes equations are solved. The do- 
main Xup

1D is coupled to the inflow (upstream) boundary of X3D

and Xdown 
1D is coupled to the outflow (downstream) boundary of

X3D. The downstream coupling is described above. In the literature,
it is common not to distingui sh between upstream and down- 
stream coupling boundary conditions. For example, in [6,33] condi-
tions (8), (9) are assumed both on upstream and downstream 
boundaries. Following this paradigm, one may consider (8), (9) or
energy consistent conditions (8), (12) as the coupling conditions 
on Cin between 1D model posed in Xup

1D and 3D model posed in
X3D. Note that in entirely 3D fluid flows simulations, inflow and 
outflow boundary conditions usually differ. If a numerical ap- 
Fig. 2. The schematic coupling of Xup
1D;X3D and Xdown 

1D domains.
proach to 1D–3D problem is based on subdomains splitting (see
the next section for an example), then it is appropriate to distin- 
guish between upstream and downstream coupling conditions.
Thus, we impose the upstream coupling condition s in such a way 
that the 3D problem is supplied with the Dirichlet inflow boundary 
condition s. This is a standard choice for incompress ible viscous 
fluid flows solvers and is especiall y convenient if third parties or
legacy codes are separately used to compute 3D and 1D solutions,
and they communi cate only through coupling condition s.

For the upstream boundary , Cin , we introduce a reference 
velocity profile ~gðxÞ;x 2 Cin, such that 

R
Cin

~g � nds ¼ 1. Then the 
boundary condition on Cin is Dirichlet, given by
uin ¼ �a~g on Cin: ð14Þ

Setting a ¼ S�ujx¼b ensures the continuity of the flux (9) on Cin. If a is
found to satisfy the equation 

�pðbÞaþ q
2
a3
Z

Cin

j~gj2ð~g � nÞds ¼ ð�pS�uþ q
2

S�u3Þjx¼b;

then the coupling condition (12) is valid on Cin. Two more scalar 
boundar y conditions are required for the 1D model in Xup

1D. We as- 
sume that �u or �p are given in x ¼ a and in x ¼ b an absorbing condi- 
tion is prescrib ed: in computa tions we set ðSuÞx ¼ 0 in x ¼ b;
another reasonabl e absorbing conditio n would be setting the 
incomin g characteris tic equals zero. On the downst ream end of
Xdown 

1D , we also assume an absorbing boundar y conditio n.
We summari ze the properties of the 3D–1D coupling intro- 

duced in this section:

� It ensures the energy balance, as stated in Theorem 2.1 .
� The inequalit y (2) is not assumed.
� It can be easy decouple d with splitting methods into the sepa- 

rate 1D problems and the 3D problem with usual inflow-out-
flow boundary conditions on every time step.

3. Discretiz ation and algebraic solver 

In this section, we introduce a splitting numerical time-integra- 
tion algorithm based on subdoma in splitting. Further, we consider 
a fully discrete problem and review one state-of-the- art algebraic 
solver.

Denote by �un; �pn; Sn; un, and pn approximat ions to the corre- 
sponding unknown variables at time t ¼ tn. Given these approxi- 
mations, we compute �unþ1; �pnþ1; Snþ1; unþ1, and pnþ1 for t ¼ tnþ1

(Dt ¼ tnþ1 � tn) in three steps:

Step 1. Integrate (7) for t 2 ½tn; tnþ1�, with given �uðtnþ1Þ on the 
upstream end of the interval Xup

1D and the absorbing down- 
stream condition at x ¼ b.

Step 2. Set uin according to (14), with f�u; �p; Sg ¼ f�unþ1; �pnþ1; Snþ1g,
and compute �p� and S� as the linear extrapolations of
�pjx¼d and Sjx¼d from times tn and tn�1. Solve the linearized 
Navier–Stokes problem in X3D for unþ1; pnþ1:
1
2Mt ð3unþ1 � 4un þ un�1Þ þ ð2un � un�1Þ � runþ1

�mDunþ1 þrpnþ1 ¼ fnþ1
;

divunþ1 ¼ 0;
unþ1jCin

¼ uin; unþ1jC0
¼ 0;

�m @unþ1

@n þ pnþ1 n
� �

jCout
¼ �p�n:

8>>>>>>>><>>>>>>>>:

Step 3. Find �unþ1jx¼d from Z
ð�p�S��unþ1 þ q
2

S�ð�unþ1Þ3Þjx¼d ¼ �pðdÞ
Cout

unþ1 � ndsþ q
2

�
Z

Cout

junþ1j2ðunþ1 � nÞds:
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Now, using �unþ1 for boundar y conditio n in x ¼ d and the absorbing 
boundary condition in x ¼ e, we integrate (7) for t 2 ½tn; tnþ1� to find
�unþ1; �pnþ1; Snþ1 in Xdown 

1D .

For the numerica l integration of the 1D model equation s, we
use a first order monoton e finite difference scheme applied to
the characteri stic form (7), see [35]. To handle the 3D model, one 
has to solve on every time step the linearized Navier–Stokes equa- 
tions, also known as the Oseen problem:

bu� mDuþ ðw � rÞuþrp ¼ f in X3D;

divu ¼ 0

ujCin[C0
¼ g; ðm @u

@n� pnÞjCout
¼ 0

8><>: ð15Þ

where u ¼ unþ1; p ¼ pnþ1 � �p�ðdÞ, the body forces term and the 
advection velocity field depend on previous time velocity 
approximat ions, f ¼ ð2DtÞ�1ð4un � un�1Þ; w ¼ ð2un � un�1Þ, and 
b ¼ 3ð2DtÞ�1. Here and in the remaind er of this section, we dropped 
out the time-step dependenc e (nþ 1) index for unknown velocity 
and pressure.

To discretize the Oseen problem (15), we consider a conforming 
finite element method. Denote the finite element velocity and 
pressure spaces by Vh � H1ðX3DÞ3 and Qh � L2ðX3DÞ, respectively.
Let V0

h be the subspace of Vh of all FE velocity functions vanishing 
at Cin \ C0.

The finite element problem reads: Find uh 2 Vh;uhjCin
¼ uh

in, and 
ph 2 Qh satisfying

aðuh;vhÞ � ðph;divvhÞ þ ðqh;divuhÞ ¼ ðfh;vhÞ 8vh 2 V0
h; qh

2 Qh; ð16Þ

with

aðuh;vhÞ ¼ bðuh;vhÞ þ mðruh;rvhÞ þ ðw � ruh;vhÞ:

Let ðw;/ÞV ¼ ðrw;r/Þ for w;/ 2 V0
h. We assume the ellipticit y, the 

continuity , and the stability conditions:

b1kvhk2
V 6 ahðvh;vhÞ; aðvh;uhÞ
6 b2kvhkVkuhkV 8vh;uh 2 V0

h; ð17Þ

c2
1 kqhk

2
6 sup

vh2V0
h

ðqh;divvhÞ2

kvhk2
V

8qh 2 Qh; ð18Þ

ðqh;divvhÞ 6 c2kqhkkvhkV 8qh;ph 2 Qh;vh 2 V0
h; ð19Þ

with positive mesh-in dependent constants b1; b2, c1, and c2. Condi- 
tion (18) is well-known as the LBB or inf-sup stabilit y condition [9].

Let f/ig16i6n and fwjg16j6m be bases of V0
h and Qh, respectively.

Define the following matrices:

Ai;j ¼ að/j;/iÞ; Bi;j ¼ �ðdiv/j;wiÞ:

The linear algebraic system correspondi ng to (16) (the discrete Oseen 
system) takes the form 

A BT

B 0

 !
u

p

� 	
¼

f

g

� 	
: ð20Þ

The right hand side ðf ; gÞT accounts for body forces and inhomoge- 
neous velocity boundary conditions. To solve (20), we consider a
Krylov subspace iterative method, with the block triang ular precon- 
ditioner [12,21]:

P ¼
bA BT

O �bS
 !

: ð21Þ

The matrix bA is a precond itioner for the matrix A, such that bA�1 may
be considered as an inexact solver for linear systems involving A.
The matrix bS is a precond itioner for the pressure Schur complemen t
of (20), S ¼ BA�1BT . In the algorithm, one needs the actions of bA�1

and bS�1 on subvecto rs, rather than the matrices bA; bS explicitly.
Once good precond itioners for A and S are available, a precond i-
tioned Krylov subspace method, such as GMRES or BiCGstab, is
the efficient solver. In the literatur e, one can find geometric or alge- 
braic multigri d (see, e.g., [12] and references therein) or domain 
decomp osition [17,31] algorithm s which provide effective precon- 
ditioners bA for a range of m and various meshes. We use one V-cycle 
of the algebra ic multigrid method [30] to define bA�1.

Defining an appropriate pressure Schur complemen t precondi- 
tioner bS�1 is more challenging. In this paper, we follow the ap- 
proach of Kay et al. [20]. First, we define the pressure mass and 
velocity mass matrices:

ðMpÞi;j ¼ ðwj;wiÞ; ðMuÞi;j ¼ ð/j;/iÞ:

The original pressure convectio n–diffusion (PCD) preconditione r,
proposed in [20], is defined throug h its inverse:

bS�1 :¼ bM�1
p ApL�1

p : ð22Þ

Here bM�1
p denotes an approx imate solve with the pressure mass 

matrix. Matrices Ap and Lp are approximat ions to convection –diffu-
sion and Laplacia n operators in Qh, respective ly. Both Ap and Lp

(explicitly or implicitly) assum e some pressure boundary condi- 
tions to be prescribed.

If Qh defines continuous pressure approximat ions, one can use 
the conforming discretizatio n of the pressure Poisson problem 
with Neumann boundary conditions:

ðLpÞi;j ¼ ðrwj;rwiÞ:

Likewise, Neuma nn boundary conditio ns are convention ally used to
define the pressure convectio n–diffusion problem on Qh. However ,
the optimal boundar y condition s setup both for Lp and Ap depends
on the type of the bound ary and flow regime, see [14,25].

We use a modified PCD preconditioner defined below. This 
modification partially obviates the issue of setting pressure bound- 
ary condition s and is consistent with the Cahouet–Chabard precon- 
ditioner [10], if the inertia terms are neglected. The Cahouet–
Chabard preconditioner is the standard choice for the time-dep en- 
dent Stokes problem and enjoys the solid mathematical analysis in
this case [24]. To define the preconditioner, we introduce the dis- 
crete advection matrix for continuous pressure approximation s as

ðNpÞi;j ¼ ðw � rwj;wiÞ:

Then the modified pressure convectio n–diffusion precond itioner 
(mPCD) is (compare to (22)):

bS�1 :¼ m bM�1
p þ ðbI þ NpÞðB bM�1

u BTÞ�1
;

where bMu is a diagonal approxim ation to the velocity mass matrix.
Regarding the numerical analysis of the algebraic solver used 

here, we note the following. The eigenvalues bounds of the precon- 
ditioned Schur complement:

0 < c1 6 jkðSbS�1Þj 6 C1; ð23Þ

were proved for b ¼ 0 and the LBB stable finite elements in [13] and
for a more general case in [25]. The constants c1;C1 are indepen dent 
of the meshsize h, but may depend on the ellipticit y, continuity and 
stability constants in (17)–(19), and thus may depend on the prob- 
lem paramete rs. In particula r, the pressure stability constant c1, and 
so c1 from (23), depends on the geometry of the domain X [11]
(tending to zero for long or narrow domains) and for certain FE pairs 
c1 depends on the anisotropy ratio of a triangulatio n [2]. Both of this 
dependenc ies require certain care in using the approac h for com- 



Table 3
Average number of itera tions of the preconditione d BiCGstab iterations for different 
meshes and viscosit y parameters.

m ¼ 1 m ¼ 0:1 m ¼ 0:01 m ¼ 0:001 

Mesh 1 10.7 10.7 13.4 14.5 
Mesh 2 5.59 6.69 8.09 8.99 
Mesh 3 4.42 4.42 6.50 7.88 
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puting flows in 3D elonga ted domains with thin and anisotropic 
inclusions (prototypical for simulati ng a flow over IVC filter).

Characte rizing the rate of converge nce of nonsymmet ric pre- 
conditioned iterations is a difficult task. In particular, eigenvalue 
information alone may not be sufficient to give meaningful esti- 
mates of the convergence rate of a method like preconditioned 
GMRES [18]. Nevertheles s, experience shows that for many linear 
systems arising in practice, a well-clustered spectrum (away from 
zero) usually results in rapid converge nce of the preconditioned 
iteration. This said, we should mention that a rigorous proof of
the GMRES convergence applied to (20), with block-triangular pre- 
conditioner (21), is not available in the literature (except the spe- 
cial case, when bS is symmetric [21,5]). Thus, the numerical 
assessment of the approach is of practical interest.

4. Accuracy and efficiency assessment 

In this section, we validate the accuracy and stability of the sol- 
ver for the 3D–1D coupled fluid model by (i) comparing the com- 
puted discrete solutions against an analytical solution for a
problem with simple geometry; (ii) computing the drag coefficient
and the pressure drop value for the flow around the 3D circular cyl- 
inder. The Taylor–Hood P2–P1 elements were used for the veloc- 
ity–pressure approximation . The resulting linear algebraic 
systems (20) were solved by the preconditioned BiCGstab method.
The initial guess in the BiCGstab method was zero on the first time 
step and equal to the ðun; pnÞ for the subsequent time steps. The 
stopping criteria was the 10�6 decrease of the Euclidean norm of
the residual.

4.1. Test with analytical solution 

First we consider an example with analytical solution. The 3D
domain is X3D ¼ fx 2 R3 jx 2 ð�1;1Þ; y2 þ z2 < 1g. The circular 
cross sections are the inflow and outflow boundaries. Domains 
Xup

1D and Xdown 
1D are two intervals of length 5. The analytical solution 

is given by

S ¼ cosð2ptÞ þ bS � 1; u ¼ 1� cosð2ptÞ; �p ¼ c2f ðSÞ;
in Xup

1D [Xdown 
1D ;

u ¼ 2S
p ð1� cosð2ptÞÞð1� y2 � z2Þ;0; 0
� �T

; p ¼ 10ð1� xÞ þ �p;

in X3D;

8>>>><>>>>:
ð24Þ
Table 1
Errors to analytical solution in X3D on the sequence of refined meshes. Reduction orders a

maxt2½0;T�ku� uhkL2 ð
R T

0 krðu� uhÞk2

Mesh 1 0.37 0.30 
Mesh 2 8.60E �2 (2.11) 6.13E �2 (2.29)
Mesh 3 2.66E �2 (1.69) 1.68E �2 (1.87)

Table 2
Errors to analytical solution in Xup

1D and Xdown 
1D on the sequence of refined meshes. Reducti

In Xup
1D

ð
R T

0 ku� uhk2dtÞ
1
2 ð

R T
0 kS� Shk2dtÞ

Mesh 1 0.25 8.84E �4
Mesh 2 5.78E �2 (2.11) 2.03E �4 (2.12)
Mesh 3 1.43E �2 (2.02) 5.01E �5 (2.02)
with bS ¼ p; q ¼ 1; c ¼ 350; m ¼ 1. This solution satisfies the conti- 
nuity of flux condition on the coupling boundari es. The right-han d
sides u; w and f were set accordingl y. In this test, the 3D domain 
was triang ulated using the global refinement of an initial mesh,
resulting in the sequence of meshes (further denoted by mesh 1,
mesh 2, mesh 3), with the number of tetrahed ra
Ntet ¼ 1272;8403;63;384, respective ly. Since we use the first order 
scheme for the 1D problem, the mesh size in Xup

1D and Xdown 
1D was di- 

vided by 4 on each level of refinement: Dx ¼ 5=16;5=64;5=256. The 
corresp onding time step was halved for every spacial refinement, so
we use Dt ¼ 0:02;0:01;0:005 for mesh 1, mesh 2, and mesh 3,
respective ly.

Based on the energy balance (13), the natural norms for mea- 
suring error in X3D are Cð0; T; L2ðX3DÞÞ and L2ð0; T;H1ðX3DÞÞ for
velocity and L2ð0; T; L2ðX3DÞÞ for pressure. These norms and, addi- 
tionally, L2ð0; T; L2ðX3DÞÞ for velocity error are shown in Table 1.
The error norms in the 1D domains coupled to the inflow and 
the outflow boundaries of X3D are shown in Table 2. We observe 
the expected second order of convergence for all variables except 
for pressure in 3D. We remark that the integral in time error norms 
were computed approximat ely using the quadrature rule:Z T

0
krðu� uhÞk2

L2 dt 	 Dt
XN

n¼1

krðuðnDtÞ � un
hÞk

2
L2ðX3DÞ; N ¼ TðDtÞ�1

:

Other integral norms were compute d in the same way.
The average number of iteration s of the BiCGstab method for 

solving (20), with block-triangular preconditioner (21), are shown 
in Tables 3 and 4. Table 3 shows that the convergence of the pre- 
condition ed BiCGstab method depends only slightly on the viscos- 
ity parameter and improves when the grid is refined. The latter 
observati on is consistent with h-independent eigenvalue bounds 
in (23) and with numerical results reported in [12] for steady prob- 
lems. Such robust behavior with respect to m is observed only for 
re given in brackets.

dtÞ
1
2 ð

R T
0 ku� uhk2dtÞ

1
2 ð

R T
0 kp� phk

2dtÞ
1
2

0.30 8.10E �2
5.97E �2 (2.33) 4.04E �2 (1.00)
1.62E �2 (1.88) 2.02E �2 (1.00)

on orders are given in brackets.

In Xdown 
1D

1
2 ð

R T
0 ku� uhk2dtÞ

1
2 ð

R T
0 kp� phk

2dtÞ
1
2

0.19 7.02E �4
3.67E �2 (2.37) 1.00E �4 (2.81)
5.64E �3 (2.70) 2.95E �5 (1.76)



Table 4
Average number of iterations of the preconditioned BiCGstab iterations for varying 
time step and viscosity parameters. The results are shown for mesh 2.

Dt m

1 0.5 0.1 0.05 0.01 0.005 0.001 

0.1 11.78 10.78 14.00 * * * *
0.05 7.16 6.84 7.21 12.00 * * *
0.01 4.28 4.45 5.65 6.27 6.30 6.63 7.14 
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sufficiently small values of the time step Dt. The results in Table 4
show that for small m-s the preconditioned BiCGstab method fails 
to converge unless Dt ¼ 0:01. More robust preconditioners as in
[4,5] may reduce the dependence on m and Dt.

4.2. Flow around circular cylinder 

Motivated by the simulation of blood flows over an intravenous 
filter, we experiment with flows in a 3D domain having an inclu- 
sion and coupled with 1D model at the outflow boundary. Interest- 
ing statistics for such applications are the drag force acting on
inclusions and the pressure drop. To validate the ability of the 3D
solver to predict these statistics, we consider two benchma rk prob- 
lems of channel flows past a 3D cylinder with circular cross sec- 
tions [29,8]. The 3D flow domain with a cylinder is shown in
Fig. 3. The no-slip and no-penetrati on boundary condition u ¼ 0
is prescribe d on the channel walls and the cylinder surface. The in- 
let velocity is given by

uin ¼ 16UyzðH � yÞðH � zÞ=H4;0; 0
� �T

on Cin;

here H ¼ 0:41 m is the width of the channel. The kinemati c viscosity 
of the fluid in this test is m ¼ 10�3 m2=s and its density is
q ¼ 1 kg=m3. The Reynolds number, Re ¼ m�1DeU , is defined based 
on the cylinder width D ¼ 0:1 m and eU ¼ 2

3 U. We consider the fol- 
lowing two benchmark problems from [29]:

� Problem P1: Steady flow with Re ¼ 20 (U ¼ 0:45 m=s);
� Problem P2: Unsteady flow with varying Reynolds number for 

U ¼ 2:25 sin ðpt=8Þm=s; t 2 ½0;8�.

The benchmarks setups do not specify outflow boundar y condi- 
tions. Hence, on the outflow boundar y we apply the 3D–1D cou- 
Fig. 3. The flow domain X3D in the benchmark problem of the channel flow past a
3D cylinder.
pling using the new conditio ns (8), (12) so that numerica l
performan ce of the coupling can be verified.

The statistics of interest are the following :

� The difference Dp ¼ pðx2Þ � pðx1Þ between the pressure values 
in points x1 ¼ f0:2;0:205;0:55g and x2 ¼ f0:2; 0:205;0:45g.
� The drag coefficient given by an integral over the surface of the 

cylinder S � Cwall:
Table 5
Problem

Mesh

Coar
Fine 
Schä
Braa

Table 6
Problem

Mesh

Coar
fine
Schä
Bayr
Cdrag ¼
2

DHU2

Z
S

m
@ðu � tÞ
@n

nx � pnz

� 	
ds ð25Þ
Here n ¼ ðnx;ny;nzÞT is the normal vector to the cylinde r surface 
pointing to X and t ¼ ð�nz;0;nxÞT is a tangent vector.

For problem P2, the reference velocity in (25) is U ¼ 2:25m=s.
For these benchma rk problems, the paper [29] collects several 

DNS results based on various finite element, finite volume discret- 
izations of the Navier–Stokes equation s and the Lattice Boltzmann 
method. In [29], the authors provided reference intervals, where 
the statistics are expected to converge . Using a higher order finite
element method and locally refined adaptive meshes, more accu- 
rate reference values of Cdrag and Dp were found in [8] for the stea- 
dy state solution (problem P1) and in [3] for unsteady problem P2.
For the computati ons we use two meshes: a ‘coarse’ and a ‘fine’
ones, both adaptive ly refined towards cylinder. The coarser mesh 
is build of 35,803 tetrahedra, which results in 53,061 velocity 
d.o.f. and 8767 pressure d.o.f. for the Taylor–Hood P2–P1 element.
The finer mesh consists of 51,634 tetrahedra, which results in
73,635 velocity d.o.f. and 12,321 pressure d.o.f. Both coarse and 
fine mesh consist of regular tetrahedra. The refinement ratio is
about 20 and 60 for the coarse and the fine meshes, respectively .
We remark that the fine mesh has four times as many tetrahedra 
touching the cylinder as the coarse mesh. The time steps are 
dt ¼ 0:002 and dt ¼ 0:001 for the coarse and the fine meshes,
respectivel y.

We first show in Tables 5 and 6 results for problems P1 and P2
obtained with the coarse and the fine meshes. For all settings, the 
computed values are within ‘‘reference intervals’’ from [29] (except
Cmax 

drag for problem P2, but in this case the upper reference bound ap- 
pears to be tough). The computed drag coefficients were well with- 
in 1% of reference values and pressure drop within 2%. This is a
good result for the number of the degrees of freedom involved. In- 
deed, the results shown in [8,3,29] for meshes with about the same 
number of degrees of freedom show comparable or worse accu- 
s P1: Computed and reference values of drag and pressure drop.

Cdrag Err% Dp Err% Niter

se 6.149 0.58 0.1679 1.81 11.5 
6.196 0.17 0.1678 1.87 10.5 

fer & Turek [6.05, 6.25] [0.165, 0.175] 
ck & Richter 6.185 0.1710 

s P2: Computed and reference values of drag and pressure drop.

Cmax 
drag Err% Dpðt ¼ 8Þ Niter

se 3.273 0.76 �0.115 11.7 
3.311 0.39 �0.107 10.6 

fer & Turek [3.2, 3.3] [�0.11, �0.09] 
aktar et al. 3.298 –
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Fig. 4. Evolution of the drag coefficient for unsteady flow around cylinder: coarse and fine grid results and reference results. The right figure zooms the plot for time in [3.8,
4.2].
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racy. In Fig. 4, we show the computed evolution of the drag coeffi-
cient for problem P2 and compare it to the reference results. The 
computed drag coefficients match the reference curve very well.
We conclude that the conformi ng finite element method with 
the coupling outflow conditions is a reliable and stable approach 
for the simulation of such flow problems.

5. Simulation s of a flow over a model IVC filter

The development of endovascular devices is the challenging 
problem of cardiovascu lar medicine. One example is the design 
of vascular filters implanted in inferior vena cava (IVC) to prevent 
a blockage of the main artery of the lung or one of its branches by a
substance that has traveled from elsewhere in the body through 
the bloodstream. The filter is typically made of thin rigid metal 
wires as illustrated in Fig. 5 (left). Numerical simulation is an
important tool that helps in finding an optimal filter design. Thin 
and anisotropic construction of a IVC filter requires adaptive grid 
refinement and makes computations of flows in such domains 
not an easy task. In this section, we demonst rate the ability of
the numerica l method to treat such problems in a stable way.
One statistic of interest here is the drag force experienced by a fil-
0
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/s
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Fig. 5. Left: An example of intravenous filter (Comed Co.); Right: 1D inflow IVC waveform
waveforms from [39].
ter. We recall that in this paper we do not account for the elastic 
propertie s of the vessel walls, which are otherwise important in
practice.

We consider a segment (4:5 cm long) of IVC with elliptic cross 
section 1:6� 2:4 cm . The filter is placed on the 0:5 cm distance 
from inflow, it is 2 cm long and the diameter of its 12 wire legs 
is 0:5 mm. Blood is assumed to be incompres sible fluid with dy- 
namic viscosity equal to 0:0055 Pa s and density equal to 1 g=cm3.

A blood flow in IVC is strongly influenced by the contraction of
the heart. The IVC have pulsatile waveforms with two peaks and 
reverse flow [39] occurring on every cardiac cycle. We consider 
the Doppler blood flow waveforms of IVC reported in [39] and
approximat e them by a smooth periodic function plotted in Fig. 5
(right). Note that the presence of significant reverse flows in IVC 
differs this problem from computin g arteria flows, where such 
phenomeno n does not typically occur.

On the inflow and outflow, the 3D vessel is coupled to 1D
models as described in Section 2.3. Each 1D model consists of
Eqs. (3)–(5) posed on intervals of 5 cm length. Periodic velocity 
with waveform as shown in Fig. 5 is prescribed on the upstream 
part of the 1D model coupled to Cin. The maximum 1D model 
velocity of 12 cm/s yields the maximum inlet velocity in X3D of
0.2 0.4 0.6 0.8 1
sec

IVC waveform

 used in computations. It was designed by interpolating the IVC Doppler blood flow



Fig. 6. The visualization of the adaptive mesh for the flow over a model IVC filter problem: the top-left picture shows the boundary surface triangulation; the top-right picture 
shows the cutaway views of the tetrahedral grid. The bottom picture shows the zoom of the mesh in the neighborhood of the filter’s ‘head’.
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about 24 cm/s. This agrees with the measure ments in [39]. The 
coupling conditions are the same regardless of the mean flow
direction.

The mesh was adapted towards the filter, so the ratio of larg- 
est and smallest element diameters was about 1:1eþ 2, the max- 
imum elements anisotropy ratio was about 14. The resulting 
mesh is illustrate d in Fig. 6. The time step in 3D model was 
set equal to 0.001 s. The BiCGstab iterative method, with precon- 
ditioner (21) was used to solve discrete Oseen subproblems. The 
stopping criterion was the reduction of the residual by the factor 
of 106. The average number of linear iteration s on every time 
step was about 35. We found that choosing time step larger 
for this problem, leads to the significant increase of the linear 
iteration counts and makes ‘long time’ computations non- 
feasible.

We visualize the computed solutions in Fig. 7 by showing the 
values of the x-component of the velocity in several cutplanes 
orthogonal to x-axis. Behind the filter the velocity x-component
eventually has negative values, indicating the occurrence of cir- 
culation zones and ‘returning’ flows. Note that the solution be- 
hind the filter is no longer axial-sym metric: a perturbation to
solution induced by non-symmetri c tetrahedral grid is sufficient
for the von Karman type flow instability to develop behind the 
filter.

Fig. 8 (left) shows the time evolution of the drag force expe- 
rienced by the filter. After the instantaneous start, the flow
needs few cycles to obtain the periodic regime. In general, the 
drag force follows the pattern of the inflow waveform. In partic- 
ular, the filter experiences forces both in downstream and up- 
stream directions at different periods of the cardiac cycle. The 
right plot in Fig. 8 shows the mean axial velocity in the middle 
point of the 1D model before and after the 3D domain with cava 
filter. It is remarkable that after few cycles, when the flow is
periodic, the waveforms in the 1D domains coupled to upstream 
and downstream boundaries are very close. This suggests that 
the coupling conditions are efficient in conserving averaged flow
quantities such as mean flux.
6. Conclusi ons 

We reviewed the 3D and 1D models of fluid flows and some 
existing coupling conditions for these models. New coupling condi- 
tions were introduced and shown to ensure a suitable bound for 
the cumulative energy of the model. The conditions were found 
to perform stable in several numerical tests with analytical and 
benchma rk solutions. For the example of the flow around IVC filter,
the coupled numerical model was found to capture the periodic 
flow regime and correct 1D waveforms before and after 3D do- 
main. The model was able to handle ‘opposite direction’ flow, i.e.
the flow where the ‘upstream ’ boundary (boundary with Dirichlet 
boundary conditions) becomes the outflow boundary for a period 
of time. The preconditioned BiCGstab method with one state-of- 
the-art preconditioner applied to the linearized finite element Na- 
vier–Stokes problem performs well. However , often the time step 
should be taken small enough to make the linear solver converge 



Fig. 7. The visualization of the velocity x-component in several cutplanes orthogonal to x-axis for times t 2 {3.06 s, 3.34 s, 3.39 s, 3.52 s, 3.66 s, 3.92 s}. One may note the 
occurrence of ‘returning’ flows behind the filter even for ‘forward’ mean flow.
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sufficiently fast. Overall, the coupled 3D–1D model together with 
the conforming finite element method and preconditioned itera- 
tive strategy was demonst rated as a reliable tool for the simula- 
tion of such biological flows as the flow over an inferior vena 
cava filter.
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