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SUMMARY

The paper addresses methods for generation of individualized computational domains on the basis of medical
imaging dataset. The computational domains will be used in one-dimensional (1D) and three-dimensional
(3D)–1D coupled hemodynamic models. A 1D hemodynamic model employs a 1D network of a patient-
specific vascular network with large number of vessels. The 1D network is the graph with nodes in the 3D
space which bears additional geometric data such as length and radius of vessels. A 3D hemodynamic model
requires a detailed 3D reconstruction of local parts of the vascular network. We propose algorithms which
extend the automated segmentation of vascular and tubular structures, generation of centerlines, 1D network
reconstruction, correction, and local adaptation. We consider two modes of centerline representation: (i)
skeletal segments or sets of connected voxels and (ii) curved paths with corresponding radii. Individualized
reconstruction of 1D networks depends on the mode of centerline representation. Efficiency of the proposed
algorithms is demonstrated on several examples of 1D network reconstruction. The networks can be used
in modeling of blood flows as well as other physiological processes in tubular structures. Copyright © 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Personalized numerical modeling in biomedical applications has received a great deal of attention
over many years, and a vast number of models have been described in the literature. Personalized
techniques evaluate patient-specific model parameters and reconstruct patient-specific geometric
model on the basis of medical imaging dataset. Given an imaging dataset, one performs image
segmentation, volume reconstruction, and numerical discretization. In personalized hemodynamic
modeling, two types of mathematical models are conventional: fluid dynamics models in three-
dimensional (3D) domain [1–4] and fluid flows in one-dimensional (1D) network of collapsible
tubes [5–10]. Both models have their pros and cons. Several 3D–1D coupling techniques are pro-
posed to benefit from both models (rf. [11] and references therein). In this paper, we address
personalized 1D network reconstruction methods which are needed in 1D hemodynamic simula-
tions and 3D–1D coupled models. The proposed pipeline consists of vessel segmentation, centerline
extraction, and 1D network reconstruction. Note that the segmented vessel image can be used for
both centerline extraction and local 3D volume reconstruction required in 3D simulations.

In the present work, we assume that voxel-based medical image dataset is provided by proto-
cols ensuring high contrast vessel images. The specific imaging procedures for contrast-enhanced
magnetic resonance angiography and other medical imaging techniques lie outside the scope
of this paper. Various medical image segmentation techniques have been developed [12–14].
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Some approaches are computationally expensive and require parallel computing, in particular, the
usage of graphic processing units [15]. In our paper, we consider low-cost segmentation algorithms,
which do not require special hardware. The primary objective of our research is to develop fast,
robust, and fully automatic segmentation of coronary arteries, critical importance of coronary vascu-
lar models being discussed in [16]. To this end, we use isoperimetric distance trees (IDT) algorithm,
the fast variant of the isoperimetric algorithm [17], presented in [18] for aorta segmentation. Its
robustness (more than 99% of segmentations are correct) [19] makes IDT-based algorithm more
appealing than Hough circleness based approach [20]. Methods discussed in [19] extract centerlines
and provide no segmentation, and we follow [20] and construct segmentation and skeletonization
of coronary vessels by Frangi vesselness filter [21] and distance-ordered homotopic thinning [22].
Frangi filter is based on Hessian 3D analysis and performs segmentation of all tubular structures
from the dataset. We should also note that the algorithms described in our paper may be applied to
other tubular structures in human body such as airways and lymphatic system.

Centerlines and curve skeletons (or simply skeletons) are commonly used to reconstruct 1D net-
works. These structures are also used for accurate length measurements and local radius estimation.
The concepts of a centerline or a skeleton are quite intuitive, although several mathematical defini-
tions may be used. The first concept of a centerline was introduced by Blum [23]. Different methods
were proposed for computing centerlines and skeletons, they use different definitions, and therefore,
may produce different results [24–27]. Subject to application, a method can produce skeleton or
centerline discontinuities that have to be fixed. An example of postprocessing algorithm eliminating
network discontinuities can be found in [28], where skeletonization of microvasculature is provided
by ImageJ and Amira software. Both centerlines and skeletons share the following common fea-
tures: connectivity, centredness , and 1D dimensionality. Connectivity requires the preservation of
object compactness. If we use voxel representation for both the initial and the resulting objects, then
centerline or skeleton of a compact shape is a set of connected voxels. Centredness requires that the
resulting object should be locally centered within the input shape with respect to the shape bound-
ary. 1D requires that the resulting object should be as thin as the representation permits, for example,
for voxel data the resulting object should be one voxel thick. In our paper, we use two distinct def-
initions of a skeleton and a centerline, assuming that: a skeleton is a 1D topological structure with
branches, while a centerline is a single path with no branches; a skeleton is uniquely determined by
the input shape, whereas a centerline must be bounded by two given endpoints.

The problems of skeletonization and centerline extraction received a major attention over many
years, and several algorithms have been proposed.

Voronoi diagram methods find centerlines as the paths in Voronoi diagrams that minimize the
integral of the radii of the maximal inscribed spheres along the path. This method was implemented
in the vascular modeling toolkit (VMTK) [29].

Distance mapping methods are generally used to construct the shortest path between two points.
The first phase computes the distance from source point to each voxel inside the 3D object, called
distance from source map. The shortest path from end point to the source point is found by descend-
ing through the gradient of the distance from source map. The centredness of the path may not be
preserved using this technique. Similar approach may be used to compute skeletons using distance
from boundary(DFB) fields [25]. The centredness problem may be solved by adding a penalty value
to the distance cost at each node to keep shortest paths away from the boundary. This is effectively
solved by employing the DFB field as node weights and extracting a minimum-cost spanning tree
build from the DFB field [30].

Level set methods have been found to produce accurate centerlines [31]. Several voxel-based
methods have been proposed to compute skeletons of 3D data [24, 25, 32, 33]. A representative
comparison of skeleton techniques is given in [34]. Methods of centerline extraction without prior
segmentation [35, 36] are outside the scope of the paper because 3D–1D coupled models require a
local 3D vessel reconstruction.

Topological thinning methods remove voxels on the boundary of the shape while preserving con-
nectivity and topology [22, 37, 38]. Voxel removal is performed in the order based on its distance to
the boundary so that to enforce centredness feature.
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In our work, we adopt the fully automatic topological thinning method [22]. We propose the
essential postprocessing step in order to eliminate false twigs from the skeleton. The new algorithm
automatically removes short twigs occurring commonly near bifurcations and flattened vessels.
We discuss also the extraction of essential geometric information (radii, cross-section areas, and
lengths of vessels) from thinning procedure data (distance map and skeleton). Alternative, more
sophisticated, methods are considered in [20].

Moreover, we propose two algorithms for reconstruction of a 1D network either from skeleton
or from a bunch of centerlines with a common endpoint. In the latter case, a centerline should be
constructed for each vessel segment separately. We present several moderate size examples of 1D
network reconstruction via centerline extraction using VMTK software [29] and manual endpoints
placement. Along with 1D network graph structure, we also extract essential geometric information
for each network segment. Minimal exported information consists of segment length and mean
radius or cross-section area of the corresponding vessel. One can extract more detailed information:
vessel radii at the ends of each segment, vessel radius, cross-section area, and curvature at each
point of the 1D network.

Once we obtained the graph representation of the vascular domain, we can postprocess it. We
discuss algorithms for graph matching introduced in [39] and address their applications to network
reconstruction enhancement. In particular, we consider how a reference global graph can be adapted
locally to obtain a patient-specific 1D network.

All methodologies that will be discussed later are summarized in Figure 1a. The algorithms can
be organized in a processing chain in several ways subject to the type of input data. An example of
fully automatic processing chain for coronary arteries network reconstruction is shown in Figure 1b.

The novelties of this paper are the following algorithms: fully automatic coronary artery seg-
mentation, automatic reconstruction of 1D network using the skeleton extraction from a segmented
image, automatic 1D network extraction from a set of centerlines with a common root, two 1D
network graph postprocessing algorithms for graph correction, and local adaptation.

The outline of the paper is as follows. The segmentation algorithm for coronary arteries is
presented in Section 2. The skeletonization algorithm is proposed in Section 3. In Section 4, we dis-
cuss techniques for graph construction. Section 5 introduces postprocessing techniques for graphs.
Numerical results are presented in Section 6.

Figure 1. Admissible flowcharts of graph reconstruction algorithms (a) and flowchart for automatic
reconstruction of coronary arteries 1D network (b).
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2. SEGMENTATION METHODS FOR TUBULAR NETWORKS

The goal of segmentation is to assign material labels to voxels, the cells of a voxel grid. Here-
after, the voxel is assumed to be a cube or a box deviating from a cube by no more than 10 %. A
voxel grid with more anisotropic cells must be resampled. The next definition is fundamental in this
work and it is useful to give it in a very beginning. Given a voxel grid, we define binary mask (or
mask) as assignment to each voxel 0 or 1. The 1-voxels compose foreground and form the object of
interest, whereas 0-voxels compose background. A voxel is said to belong to a mask if it belongs
to foreground.

One of the primary objectives of our research is the development of fast-fully automatic segmen-
tation of coronary arteries. Our segmentation technology resembles algorithms [19, 20] and consists
of three stages: aorta segmentation, ostia points detection, and segmentation of coronary arteries.
The output data is a binary mask of vessels.

The first step in our automated segmentation algorithm for coronary arteries is obtaining the
binary mask of aorta. Similarly to [19], our aorta segmentation algorithm is based on IDT
method [18]. The IDT method is fast, robust, and provides anatomically correct results. It inputs an
initial mask and a voxel from this mask, cuts a mask at bottlenecks, and outputs a submask of the
initial mask containing the input voxel. The fully automated aorta segmentation is defined by the
following algorithm:

Algorithm 1 Aorta segmentation.
1: Find an image with anatomically uppermost cut, compute the radius RA , and the center xcenter

of the largest bright disk using the Hough circleness transform (Figure 2a).
2: Find the threshold T as the minimal intensity inside the disk.
3: Extract the connected mask M according to the threshold T (Figure 2b).
4: Apply the IDT to M and xcenter and obtain the mask of aorta MA (Figure 2c).
5: Eliminate from MA voxels distanced from the boundary of MA closer than a smoothing

parameter R (Figure 2d).
6: Add to MA voxels distanced from the boundary of MA closer than the smoothing parameter R

(Figure 2e).

Algorithm 1 is illustrated in Figure 2. The largest bright disk at the first image correspond the
uppermost aorta cut. Apart of the aorta, mask M contains contrast enhanced parts of the heart and
other vessels, and therefore, the IDT algorithm is in demand.

For computation of distance to the boundary, we introduce the distance map: initiate all mask
voxels x by

dist .x/ D
²
0 if x … mask;
inf if x 2 mask;

where inf is a large integer exceeding the total number of voxels; the distance map is defined
recursively:

dist.x/ D min
x02N6.x/

.dist .x0/C 1/;

where N6.x/ denotes the set of voxels 6-adjacent to x (i.e. voxels sharing one common face with
voxel x). Note that at Step 6 of Algorithm 1, the distance map is computed for the background
of MA.

The last two steps of the aorta segmentation algorithm smooth the mask MA and denoise its
boundary. The noises may occur due to inappropriate choice of the threshold T and wrong assign-
ment of coronary vessels parts to the mask of aorta at the IDT stage. Therefore, smoothing parameter
R should not be less than the maximum radius rmax of coronary vessels and essentially less than
RA. In practice, instead of rmax computation, we set R D 15 > rmax: for four CT and MRI datasets
with different noisiness such choice provided successful aorta segmentations, Section 6.
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Figure 2. Aorta segmentation pipeline: (a) red circle with radius RA and center xcenter corresponds to aorta
cut, (b) connected initial mask M containing xcenter, (c) output of IDT contains a noisy mask of aorta and
parts of coronary vessels, (d) shrinking mask MA at distance R (in voxel units), (e) expanding mask MA at

distance R (in voxel units) provides the aorta segmentation.

For vascular segmentation, we exploit Frangi vesselness filter. It is based on eigenvalues of the
Hessian of an image function L.x/, where x is 3D coordinate vector. The filter measures similarity
to a tubular structure and assigns vesselness value to each input voxel. Thresholding of the vessel-
ness values provides a binary mask of vascular structures. The approach gives anatomically correct
segmentation of all input voxels regardless of possible image discontinuities. The general idea of
the local analysis of image L.x/ is based on its Taylor expansion. For computation of the Hessian
Hs.x/ of L , one uses normalized derivatives in accordance with the linear scale space theory [40]:

@

@xi
Ls.x/ D s�L.x/ �

@

@xi
G.x; s/;

where � denotes the convolution, G.x; s/ WD 1
p
2�s2

3 e
�jjxjj2

2s2 is the 3D Gauss kernel, jjxjj is the

Euclidean norm of vector x 2 <3. Hereinafter, the length is measured in voxels, that is, the voxel
size is assumed to be equal to 1. Parameter s with length dimension defines the scale and has the
following meaning: the second directional derivative of G.x; s/ at scale s allows to gauge the con-
trast between the interior and exterior parts of the interval .�s; s/ along the direction. Parameter �
defines a family of normalized derivatives [41]. This normalization is important for a fair compar-
ison of the response of differential operators at multiple scales. For each voxel vesselness V.s/ at
scale s is computed via the eigenvalues j�1j � j�2j � j�3j of the Hessian Hs:

V.s/ D

8<
:
0 if �2 > 0 or �3 > 0;�
1 � exp

�
�

R2
A

2˛2

��
exp

�
�

R2
B

2ˇ2

��
1 � exp

�
� S2
2c2

��
; otherwise:

Here, RB D j�1j=
p
j�2�3j accounts the deviation from a blob-like structure, RA D j�2j=j�3j is

ratio distinguishing between plate-like and line-like structure, S D jjH jjF D
q
�21 C �

2
2 C �

2
3 is

the Frobenius norm ofHs . Frangi parameters ˛, ˇ, and c define thresholds that control the sensitivity
of filter to measure RA, RB , and S, respectively.

Segmentation of vessels with various radii is easily performed with the scale range Œsmin; smax�:
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V D max
smin6s6smax

V.s/:

In practice, vesselness filter detects both vessels and bones. Therefore, the Frangi filter segmen-
tation of large vessels requires preprocessing of the input image, which obscures all bones. Heart
imaging dataset have relatively low resolution, and the filter computation is not time consuming in
this case.

Given the mask of aorta, we apply the Frangi filter with parameters ˛ D 0:5, ˇ D 0:5, c D
300 for three scales s D 1; 2; 3. Ostia points are detected as two distinct local maxima of Frangi
vesselness inside the mask of aorta. The coronary arteries are defined as components of vascular
trees rooting at ostia points.

3. SKELETONIZATION OF SEGMENTED TUBULAR NETWORKS

Centerline is the convenient entity for description of tubular structures. There exist several methods
of centerlines extraction without image segmentation. Because our objective is to generate 1D vas-
cular networks and 3D reconstruction of local vascular regions, we shall not address these methods.
Skeletonization is a fully automatic approach for centerline extraction. The thinning method gener-
ates vascular skeletonization. The input for the method is a binary mask of segmented object. The
output is a skeleton (one-voxel thick set of connected voxels). The postprocessing step is used for
automatic centerlines extraction and graph construction.

3.1. Thinning method

Among different implementations of the thinning idea, we adopt the distance-ordered homotopic
thinning proposed by C. Pudney [22]. We use the definition of binary digital image .Z; F;m; n/
from [42], where Z is a binary mask, F is a mask foreground, parameters m and n define the con-
nectivity rules of m-adjacency for foreground voxels and n-adjacency for background voxels. The
algorithm starts with a binary image .Z; F;m; n/ and outputs the skeleton topologically equivalent
to Z and centered with respect to the shape of Z. Set N26.p/ denotes the set of voxels neighbour-
ing to voxel p and sharing either a face, or an edge, or a vertex, this connectivity rule is called
26-adjacency. Set N6.p/ denotes the set of voxels neighbouring to voxel p and sharing a face, this
connectivity rule is called 6-adjacency. Voxel p is called simple, if it can be deleted from Z by set-
ting Z.p/ D 0 without topology modification of the shape of Z. The rule for determining whether
voxel is simple is presented in [43]. The thickness of a skeleton is determined by m-adjacency and
n-adjacency. In our work, we set m D 26 and n D 6.

The centredness of the skeleton is determined by the order of voxel elimination fromZ. Following
[22], we define a chamfer distance transform approximating Euclidean distance transform:

dmap .x/ D

´
0 if x is a background voxel;

min
x02N26.x/

.dmap .x0/C dist .x; x0// if x is a foreground voxel:

The initial value for all foreground voxels x in this recursive definition is defined as dmap.x/ D inf,
the value of inf is big enough (the threefold total number of foreground voxels) and dist.x; x0/ is
defined as

dist.x; x0/ D

8<
:
n1 if jjx � x0jj2 D 1;
n2 if jjx � x0jj2 D 2;
n3 if jjx � x0jj2 D 3:

Borgefors in his work [44] showed that setting n1 D 3, n2 D 4, and n3 D 5 minimizes the
upper bound on the difference between the chamfer and Euclidean distances. In the definition of
dist.x; x0/, we use Euclidean norm, assuming a voxel is a unit cube.
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During the thinning process, the voxels are sorted by dmap values in ascending order and are
deleted in groups with the equal values. In his work, Pudney defines a center maximal ball using the
chamfer transform definition and introduces the two following deletability rules.

1. A voxel is deletable if it is simple and not the center of a maximal ball with distance value
greater than a user-defined threshold.

2. A voxel is deletable if it is simple and not the end of a medial axis (i.e. it is 6-adjacent to one
and only one foreground voxel).

In the original work, the first rule is used at the first stage of thinning process, and the second rule
is used at the second stage. In practice, this approach leads to a skeleton with several false twigs,
usually near bifurcations and flattened vessels, which do not correspond to any actual vessel. False
twigs are attributed to superfluous topology features caused by initial image noises and irregularities
of vessel shape.

We developed an alternative approach: we use Pudney’s algorithm with the second deletability
rule, and then we apply a postprocessing stage to eliminate false twigs. This technique allows us to
identify vessel structure using a postprocessed skeleton.

3.2. False twigs elimination

As described previously, the skeletonization process preserves the network topology but may pro-
duce false twigs to be eliminated. For mathematical definition of false twigs, we will use the
following notations. Two voxels are called adjacent, if one of them is 26-adjacent to another. Two
voxels V and G belong to the same connectivity component, if a series of voxels V0; V1; V2; : : : ; Vn
exists, such that V0 D V , Vn D G, and 8i D 1; : : : ; n voxels Vi and Vi�1 are adjacent. All vox-
els belonging to the same connectivity component defines the latter one. Skeleton voxel is called
inner, if it has exactly two adjacent voxels. Skeleton voxel that is not inner is called voxel-node.
Skeleton voxel with at most one adjacent voxel is called end-node. The connectivity component of
inner voxels along with two bounding voxel-nodes defines the skeletal segment. The voxel-nodes of
a skeletal segment are called segment ends. The length of a skeletal segment is defined as a number
of voxels in the skeletal segment. Finally, a false twig is a skeletal segment, with one of the seg-
ment ends being an end-node, and the length of the skeletal segment is smaller than a user-defined
threshold parameter.

We developed Algorithm 2 for false twigs elimination. It consists of the following steps. All
skeletal segments with end-nodes as segment ends are identified. All segments with length smaller
than the threshold are eliminated simultaneously. The skeleton thickness is enforced: voxel-nodes
adjacent to eliminated skeletal segments are analyzed, and excessive voxel-nodes are eliminated. If
at least one skeletal segment is eliminated, we start over. Importantly, all existing false twigs should
be eliminated simultaneously, otherwise valid vessel branches may be accidentally eliminated
(ref. Figure 3).

We describe the false twig elimination step in detail. First, we delete the skeletal segment keeping
its end near the junction. This segment end is labeled as red voxel. If the red voxel is simple, then
we remove it. Whenever the voxel-node is removed, we mark adjacent voxel-nodes as blue voxels.
We use skeletonization rule of deletability for each blue vertex: it is deletable if it is simple and not
end-node. This rule is not applicable to red voxels, because they are usually end-nodes.

Figure 4 shows three 2D examples of false twig elimination process. The first row repre-
sents the initial voxel configuration; the final state is presented in the second row. In all cases
MaxLenOfFalseTwig D 4. Hatched voxels represent false twigs; voxel-nodes are marked by circles.
In the first case (Figure 4a,d), the left segment is identified as false twig, and node 5 is marked red.
Voxel-nodes 6, 7, and 8 will be marked blue after false twig elimination. Nodes 6 and 8 will be
kept, because they are not simple. Node 7 will be deleted because it is simple and not endpoint. At
the next stage, voxels 6 and 8 are inner voxels, and node 9 will be marked blue (Figure 4d). Node
9 is kept, because it is not simple. In the second case (Figure 4b,e), left, right, and upper segments
are false twigs and nodes 5, 6, and 7 are marked red. These nodes will be deleted, because they are
simple. Voxel-nodes 8 and 9 will be marked blue. Both will be kept, because node 9 is not simple,

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015); e02754
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Figure 3. 2D example of false twigs elimination with threshold parameter set to 11 voxels: (a) initial skele-
ton, (b) consecutive order of false twigs elimination leads to elimination of all voxels, and (c) simultaneous

false twigs elimination leads to accurate skeleton, which is colored white.

Figure 4. Three cases of false twigs elimination with threshold parameter set to four voxels (2D examples).
The first row represents the initial voxel configuration; the final state is presented in the second row. Hatched

voxels represent false twigs, voxel-nodes are marked by circles.
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and node 8 is an end-node. At the final stage, voxel 9 is an inner voxel (Figure 4e). In the third
case (Figure 4c,f), right segment is a false twig, and node 4 is marked red. This node will be kept,
because it is not simple. At the final stage, voxel 4 is an inner voxel (Figure 4f).

Algorithm 2 False twigs elimination.
1: Set Nodes D ¿, FalseTwigs D ¿, RedNodes D ¿, BlueNodes D ¿
2: Find all voxel-nodes and push them into Nodes
3: for all end-nodes V 2 Nodes do
4: identify skeletal segment E with segment end V
5: if length of E is smaller than MaxLenOfFalseTwig then
6: push E into FalseTwigs
7: end if
8: end for
9: if FalseTwigs is empty then

10: exit the algorithm
11: end if
12: for all E 2 FalseTwigs do
13: eliminate all inner voxels of segment E from skeleton
14: for all segment ends V of E do
15: if V is end-node then
16: eliminate V from skeleton
17: else
18: push V into RedNodes
19: end if
20: end for
21: end for
22: while RedNodes ¤ ¿ do
23: pop voxel V from RedNodes
24: if V is simple voxel then
25: eliminate V from skeleton
26: push into BlueNodes all adjacent to V voxels from Nodes
27: end if
28: end while
29: while BlueNodes ¤ ¿ do
30: pop voxel V from BlueNodes
31: if V is simple voxel then
32: eliminate V from skeleton
33: push into BlueNodes all adjacent to V voxels from Nodes
34: end if
35: end while
36: restart from line 1

The iterative Algorithm 2 eliminates all false twigs keeping intact voxels corresponding to ves-
sel center lines. New false twigs may appear only in places where previous false twigs were
deleted. Because no long skeletal segment is split during the process, no new twigs may appear.
The described algorithm may be modified to skip previously examined valid skeletal segments. In
this case, the algorithm will visit each skeletal segment only once. In practice, only few iterations
of the algorithm are needed. The run time for this algorithm is presented in Table II, in row false
twigs elimination.

In our algorithm, the threshold parameter MaxLenOfFalseTwig is fixed. Some tiny vessels with
small radius may be shorter then MaxLenOfFalseTwig. We propose to use heuristic rule of local
threshold adaptation: for each skeletal segment E, we set MaxLenOfFalseTwig .E/ D 2r.V /,

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015); e02754
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where r.V / is the local radius in the corresponding red voxel V . The algorithm for r.V / evaluation
is presented in Section 4.1.

4. GRAPH STRUCTURE OF PREPROCESSED TUBULAR NETWORKS

Graph structures are commonly used to represent 1D tubular networks in different applications.
In this section, we discuss two techniques for graph extraction from image skeleton and a set of
centerlines with common root. Additional geometric information associated with graph is recovered
as well: coordinates of graph nodes and mean radius of corresponding tubular segment for each
graph edge.

4.1. Graph reconstruction for skeletonized networks

Once the skeleton is cleared from false twigs, the 1D graph reconstruction is straightforward. Each
skeletal segment corresponds to a centerline of a vessel segment. The centers of voxels along the
skeletal segment define the centerline of the segment. We need to compute the length of the line, as
well as the mean vessel radius.

The following heuristic estimation is used for line length:

len.V0; V1; : : : ; VN�1/ D jjVN�1 � VŒ.N�1/=S��S jj C
Œ.N�1/=S�X

iD1

jjVi �S � V.i�1/�S jj;

whereN is the length of the skeletal segment, Vi are the coordinates of .iC1/-th voxel along the seg-
ment. If a skeletal segment zigzags, the computed length across all voxels exceeds the actual length.
For more accurate estimation, we count every S -th voxel in line length estimation. The bigger
parameter S is used, the less sensitive to zigzags is the segment length. Basing on the comparisons
with the straightforward computation of line lengths by VMTK tools, we set S D 4 to minimize
the error of the estimation. Note that one can also use a robust approach based on multi-planar
reformatted (MPR) images [20].

For vessels with circular cross-sections local vessel radius r.V / in voxel V can be estimated from
the chamfer distance transform via Algorithm 3.

Algorithm 3 Computation of vessel radius r.V /
Require: dmap

1: U WD V
2: while dmap.U / > 0 do
3: U WD arg min

x2N26.U /
dmap.x/

4: end while
5: return jjU � V jj

The quickest descent through chamfer transform map is used to find the nearest background voxel.
The returned value (computed in voxel units) in fact is slightly bigger than the radius of the maximal
inscribed ball with the center V . This value is used as estimation of the local vessel radius in voxel
V . The mean vessel radius is computed as the mean value of local radii across the vessel.

For vessels with oblate elliptic cross-sections, we propose an MPR-based method for computa-
tion of mean cross-section area (Algorithm 4). Details on MPR image construction and detection
of lumen contours can be found in [20]. Detection of lumen contours in step 3 is essential, because
it reduces overestimation of the cross-section area near bifurcations. Longitudinal cuts can be con-
structed from spanning planes for . Oe1; Oe2/ and . Oe1; Oe3/ for every voxel in centerline, where Oei is the
eigenvector corresponding to eigenvalue �i , i D 1; 2; 3, rf. Section 2. The formula in step 7 pro-
vides reasonable results for elliptic-shaped vessel cross-sections, because Oe2; Oe3 are oriented along
semi-axes of an ellipse approximating the cross-section.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015); e02754
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Algorithm 4 Computation of mean vessel cross-section areas along skeletal segment
Require: Skeletal segment, original DICOM dataset

1: Compute MPR image for skeletal segment
2: Find 2 longitudinal cuts L1 and L2 of MPR image
3: For each cut detect lumen contours
4: for all voxels V in skeletal segment do
5: Find 2D slice ˘V of MPR image containing voxel V
6: Compute from lumen contours the lumen diameters di in ˘V \ Li , i D 1; 2
7: Compute mean area for voxel V : AV D �

4
d1d2

8: end for

The connectivity component of voxel-nodes is used to define the graph node coordinates. The
latter are coordinates of the barycenter of the connectivity component of the voxel-nodes. Each
skeletal segment has two associated segment ends that belong to some voxel-nodes components,
which in turn correspond to graph nodes. This information is used to specify the connectivity of
the graph.

4.2. Graph reconstruction for centerlines

In this section, we present technique for merging several centerlines in a 1D graph representing
a tubular network. We assume that the centerlines were extracted either from a segmented image,
or from a realistic 3D anatomy model, for example, from anatomy models from Plasticboy Pic-
tures CC [45]. The minimum cost path construction implemented in VMTK software[29] generates
for each vessel segment a centerline connecting two corresponding extremal points. We present
in Section 6 several moderate size examples of VMTK 1D network reconstruction with manual
endpoints placement.

We can represent each centerline C as an ordered set of pairs C D ¹.ai ; ri /º
n
iD1 and associate this

centerline with graph edge e D .a1; an/. The set of input centerlines is treated as a set of standalone
graphs consisting of one edge. In order to merge those graphs in one network, we need to construct
all edge intersections in each graph. Spatial position of tubular structures defined by centerlines is
used for intersection evaluation.

We define branching point aij for two edges of centerlines C 0 D ¹.a0i ; r
0
i /º

n
iD1

and C 00 D
¹.a00j ; r

00
j /º

m

jD1
based on the following condition (branching point is marked red in Figure 5b):

9a0i 2 C
0; a00j 2 C

00 W ka0i � a00j k < r
0
i C r

00
j ) aij D

�
a0i C a00j

�
=2; rij D

�
r 0i C r

00
j

�
=2; (1)

where kx � yk is an Euclidean distance between points x and y.
The definition (1) is based on the assumption that the distance between centerline points is small

enough: 8ai ; aiC1 2 C W kaiC1 � aik < max.riC1; ri /. We can always enforce this condition by
inserting additional points in the centerline.

Once a branching point is detected, we add new graph edges .a01; aij /, .aij ; a
0
n/, .a

00
1; aij /,

.aij ; a00m/ and remove previous edges .a01; a
0
n/, .a

00
1; a
00
m/merging two centerlines (Figure 5). The new

edges store the original centerline information.
In general case, a pair of edges may have multiple branching points and additional considerations

should be taken. In Figures 6a,b, different layouts of centerline intersections are presented. In all
cases, merging of several adjacent branching points in one cluster is preferred. We define an auxil-
iary graphGc D .Vc ; Ec/ , where branching points define the set of nodes Vc , and edges satisfy the
following condition:

.aij ; akl/ 2 Ec , kaij � aklk < rij C rkl :

The set of branching points A may be split into subsets (clusters) A1; A2; ::; Ak using one of the
following two rules:

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015); e02754
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Figure 5. Branching points creation: (a) pair of edges with a0
i

and a00
j

complying with condition (1),
(b) branching point aij marked red, and (c) modified graph after merging.

Figure 6. Different techniques for merging centerlines: (a) centerlines corresponding to several intersecting
branches, (b) branching points (red dots) defined by condition (1), (c) and (d) nodes union into the branching

points (blue dots) under Rules 1 and 2, respectively.

Rule 1: 8ai 2 Am 9aj 2 Am W .ai ; aj / 2 Ec ;
Rule 2: 8ai ; aj 2 Am .ai ; aj / 2 Ec and Àak 2 A n Am W 8ai 2 Am W .ak; ai / 2 Ec .

According to Rule 1, the set Ai corresponds to nodes from the i-th connected component of the
graph Gc . According to Rule 2, each set corresponds to a maximum graph clique. A clique in graph
G is a subgraph C D .VC ; EC / � G such that for every two nodes in VC there exists an edge in
EC connecting them. A maximum clique is a clique with the largest number of nodes in the given
graph. An algorithm implementing Rule 2 is presented in Algorithm 5. The algorithm for maximum
clique search is based on [46] and in our work was implemented with NetworkX library.

Algorithm 5 Branching points clustering using Rule 2.
1: Set i D 1
2: Set G D Gc
3: while G ¤ ¿ do
4: Find maximal clique Kmax of graph G
5: Set Ai as nodes from Kmax

6: G WD G nKmax

7: i WD i C 1
8: end while

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015); e02754
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Once the clusters are built, their centers are used as branching points, and the merging tech-
nique proposed previously is used. The result of clustering using both proposed rules is presented
in Figure 6. We prefer to use Rule 2 because it produces more accurate results. This rule is used in
numerical examples presented in Section 6.

We defined the algorithm for merging two single edge graphs in a graph network. In general case,
two graph networks can be merged by applying this algorithm pairwise when the first edge of a
pair belongs to the first graph, and the second edge belongs to the second graph. This technique is
also applied when network graphs from different segmented images should be stitched together. The
proposed technique is applicable to graphs with loops and multiple edges. If the tubular centerline
is discontinued and the gap is less than the tubular radius, the proposed technique connects both
centerlines automatically.

5. GRAPH-BASED APPLICATIONS

In Section 4, we considered graph reconstruction for a tubular network. Every graph edge corre-
sponds to a tubular segment described by a centerline. Such graphs provide the base for the solution
of practical problems in personalized 1D hemodynamic modeling.

First, the network reconstruction according to segmented dynamic datasets (e.g. coronary com-
puted tomography) needs matching and coupling of structures extracted at different time moments.
Vessel displacements and uneven distribution of contrast matter in blood make this task complicated:
graph structures at different moments can be non-isomorphic and have some geometric differences.

Second, personalized 1D-hemodynamic modeling often requires global network reconstruc-
tion given regional data. Conventionally, there is no possibility to acquire an image dataset for
the full vasculature of the patient. Moreover, only regions with pathologies can have computa-
tional significance in simulation. One can produce a generic network locally adapted to patient
diagnostic data.

Additionally, having a reference graph, we can achieve significant enhancement of the automatic
personalized reconstruction. The reference graph may be obtained from a thoroughly segmented vol-
ume of interest or be a manually created structure (e.g. with anatomic atlases). Association between
the reference graph and a personalized graph can correct ruptures and other faults emerged from
low-quality segmentation of patient vasculature.

These problems require association technique between elements of the graph. Standard algo-
rithms dealing with isomorphic graphs are not applicable in these cases. We propose to use the
alternative approach introduced in [39, 47]. It considers inexact graph matching on the basis of
similarity between geometric and topological features of tubular structures.

5.1. Automatic graph matching method

Let G1 D .V1; E1/ and G2 D .V2; E2/ be two graphs with sets of nodes V1, V2 and sets of edges
E1, E2. The association graph GA D .VA; EA/ of G1 and G2 is defined in two steps in accordance
with the sets of functions SV and SE specifying similarity between nodes and edges, respectively.
Both functions fi 2 SV and gi 2 SE vary in range Œ0; 1�. The closer function value is to 1 , the
stronger similarity between elements is:

VA D

8<
:va 2 V1 � V2 j

X
fi2SV

!ifi .va/ > �V

9=
; ; !i 2 Œ0; 1�;

X
i

!i D 1; (2)

EA D

8<
:.va; vb/ 2 VA � VA j

X
gi2SE

�igi .va; vb/ > �E

9=
; ; �i 2 Œ0; 1�;

X
i

�i D 1; (3)

where�V and�E are threshold values in range Œ0; 1�. At the first step, we add to VA nodes accord-
ing to (2). This means that VA corresponds to the set of all potential assignments of nodes in the
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set V1 to nodes in the set V2. In order to determine whether a node va D .va1 ; va2/ 2 VA rep-
resents a promising assignment, the set of node similarity functions SV must be computed. At the
second step, we add to EA edges according to condition (3). Two nodes va D .va1 ; va2/ 2 VA
and vb D .vb1 ; vb2/ 2 VA are connected by an edge if both two potential assignments are
mutually consistent.

The choice of functions fi 2 SV and gi 2 SE depends on application. Functions fi 2 SV can be
based on local properties of the network nodes:

1. Euclidean distance between nodes coordinates;
2. nodes degree or level (in the sense of the graph theory);
3. similarity between local radii of input/output branches;
4. similarity between shortest distances to root nodes.

Functions gi 2 SE can be constructed to catch the following features:

1. Euclidean distance between pair of nodes;
2. similarity of lengths along the centerlines p.va1 ; vb1/ and p.va2 ; vb2/;
3. similarity between curved centerlines p.va1 ; vb1/ and p.va2 ; vb2/;
4. similarity between local radii of corresponding centerlines.

Given an association graph GA for G1 and G2, we can modify G1 and G2 by replacing and
merging their elements. For particular applications we refer to Section 6.

5.2. Local adaptation of reference graph to diagnostic data

Let graph B D .VB ; EB/ correspond to a reference global network structure, graph C D .VC ; EC /
be reconstructed from patient pre-segmented CT/MRI data in a region of interest. In order to sim-
ulate the global blood flow in a global individualized 1D network, we need to acquire graph D by
local adaptation of B to C .

At first, we find the association graphGA D .VA; EA/. Let Ev denote the set of edges adjacent to
v , and rv.e/ denote the local radius of tube corresponding to e adjacent to v. We define functions
R1.v/; R2.v/; R3.v/:

R1.v/ D max
e2Ev

.rv.e//; e1 D arg max
e2Ev

.rv.e//;

R2.v/ D

´
max

e2Evne1

.rv.e// if Ev n e1 ¤ ¿;
0 if Ev n e1 D ¿;

e2 D arg max
e2Evne1

.rv.e//;

R3.v/ D

´
max

e2Evn.e1[e2/
.rv.e// if Ev n .e1 [ e2/ ¤ ¿;

0 if Ev n .e1 [ e2/ D ¿;
e3 D arg max

e2Evn.e1[e2/
.rv.e//:

Function fb determines similarity between branching nodes considering three adjacent edges of
the maximum radius:

fb.va/ D fb.v1; v2/ D

3Y
iD1

�
1 �

jRi .v1/ �Ri .v2/j

max.R1.v1/; R1.v2//

�
: (4)

We use this function in (2) with weight !1 D 1:0 and �v D 0:65 to find VA. Then we determine
set of edges EA as edges of all possible shortest paths in graph B between v1; v2 2 VA. To define
the locally adapted graph D, we remove the set of edges EA from EB and replace it by EC just
merging it via association for VA.

Importantly, functions fb do not take into account spatial layout or orientation of graphs B and
C , and preliminary alignment of graphs is not required. This may be useful for defining association
between networks constructed from different datasets (e.g. for different patients) corresponding to
the same anatomical regions with anthropometric similarity.
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5.3. Graph matching of tubular network dynamic sequence

LetG1 andG2 be graphs reconstructed from the segmentations of the same region and distinguished
by small spatial displacements and topological differences. This is typical for the coronary CT
datasets or the usage of different tomography modes for the same patient diagnosis. In order to
acquire more comprehensive reconstruction of the examined region, one can generate an association
graph GA that involves nodes and edges from G1 and G2. To acquire GA, it suffices to define
functions f .va/ and g.va; vb/ from (2), (3). Parameters �V , �E should be close to 1 and subject
to application.

Because of small spatial displacements, we can use Euclidean distance to determine similar-
ity between nodes: f .va/ D f .v1; v2/ D .1 � kv1 � v2k/, where kv1 � v2k is normalized in
the range [0,1]. We use the dynamic time warping algorithm to determine similarity g.va; vb/ D
g..va1 ; vb1/; .va2 ; vb2// between two centerlines p.va1 ; vb1/, p.va2 ; vb2/. We define recursively a
distance functionDŒi1; i2� between i1-th point in centerline p.va1 ; vb1/ and i2-th point in centerline
p.va2 ; vb2/ according to (5):

DŒi1; i2� D kvi1 � vi2k Cmin.DŒi1 � 1; i2�;DŒi1; i2 � 1�;DŒi1 � 1; i2 � 1�/: (5)

We set g..va1 ; vb1/; .va2 ; vb2// = .1 � D0Œn1; n2�/, where n1 and n2 are numbers of points in
p.va1 ; vb1/ and p.va2 ; vb2/, respectively, and D0 is normalized function D in the range [0,1]. For
the detailed description of the dynamic time warping method, we refer to [48].

6. NUMERICAL RESULTS

The proposed segmentation, skeletonization, and graph construction algorithms were evaluated on
two cardiac contrast-enhanced CT DICOM images (Figure 7) and micro-CT images of vascular
corrosion cast of rabbit kidney (Figure 8). The resolution of cardiac images as well as run times for
different segmentation steps are presented in Table I. The time for ostia points detection is negligibly
small, and therefore is not included in the table. The most CPU time is attributed to Frangi filtering.
The quality of provided CT images is quite high, thus no ruptures appear in the segmented images.
A small number of false twigs appear mainly near the ostia points.

Figure 7. Segmentation and skeletonization of two cardiac CT images: (a) and (d) segmented aorta (green)
and coronary arteries (red) for Case 1 and Case 2, respectively, (b) and (e) skeletons before false twigs

elimination, (c) and (f) skeletons after false twigs elimination.
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Figure 8. Segmentation and skeletonization of rabbit kidney: (a) segmented rabbit kidney, (b) skeleton after
false twigs elimination, (c) bifurcations of skeletonized network before false twigs elimination, and (d) after

false twigs elimination. �CT DICOM data was provided by J. Alastruey [49, 50].

Table I. Data set resolution and CPU time of coronary segmentation stages.

Data set Case 1 Case 2

Resolution 512 � 512 � 248 voxels 512 � 512 � 211 voxels

Spacing 0:37 � 0:37 � 0:40 mm 0:46 � 0:46 � 0:48 mm

Aorta segmentation 5.80 sec 5.19 sec

Frangi filter 91.76 sec 73.94 sec

Table II. Data set resolution, CPU time of skeletonization, false twigs elimination and
graph reconstruction stages, and total skeletal segments statistics for cardiac image

Case 1 and segmented rabbit kidney.

Data set Case 1 Rabbit kidney

Resolution 512 � 512 � 248 voxels 2000 � 1989 � 910 voxels

Distance map 0.20 sec 58.12 sec

Thinning 0.79 sec 526.98 sec

False twigs elimination 0.15 sec 16.61 sec

Graph construction 0.13 sec 12.27 sec

Number of skeletal segments 22 + 6 false twigs 4302 + 2142 false twigs

The DICOM images of micro-CT of vascular corrosion cast of rabbit kidney was kindly provided
by J. Alastruey from the Department of Bioengineering, Imperial College London, UK. Papers
[49, 50] present a method for rabbit kidney casting. The cast is �CT-imaged with high resolution
2000 � 1989 � 910 voxels. The data was split in three blocks, and for each block the Frangi filter
was applied with scales 1 6 s 6 20 voxels. Three segmented images were combined and the largest
connected component was selected. We applied Frangi filter with parameters ˛ D 0:4, ˇ D 0:2

and c D 300. The segmented image was used for skeletonization and false twigs elimination tests.
The run times of different skeletonization stages for cardiac image Case 1 and segmented rabbit
kidney are presented in Table II.
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Figure 9. Reconstruction of large arteries: (a) segmentation, (b) extracted centerlines, and (c) 3D core graph.

Figure 10. Reconstruction of human airways: (a) segmented trachea and bronchus, (b) extracted centerlines,
and (c) 3D core graph.

Figure 11. Two-component lymphatic structure extracted from realistic anatomy 3D model:(a) polygonal
surface representation of lymphatic system and (b) 3D core graph.

The algorithm for centerlines-based graph reconstruction was applied to different preliminary
segmented data with VMTK library methods: a number of CT datasets for arteries (Figures 9, 12,
13), MRI images of lungs region (Figure 10). Voxel size for all experiments is equal to 1�1�1mm.
Figure 11 presents graph reconstruction of lymphatic system from the 3D-polygonal anatomically
realistic model [45].

Figure 12 represents evaluation of the local-graph adaptation algorithm. A reference graph to
be adapted was reconstructed from preliminary segmented main arteries for a patient (Figure 12a).
Locally detailed graph was extracted from another patient and was considered as adaptation graph
(Figure 12b). Figure 12c shows the result of the local-graph adaptation algorithm.
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Figure 12. Performance of local adaptation method: (a) reference graph, (b) patient-specific graph recon-
structed for local vascular domain, and (c) reference graph locally adapted.

Figure 13. Performance of graph matching method: (a) comparison of two different segmentation of the
same vascular domain; (b) and (c) are reconstructed graphs for the first and the second segmentation; (d)

merged graph constructed along with graph association method, respectively.

Graph matching method was tested on two artificially distorted segmentations of the same vas-
cular network regions. These two graphs with different topology were automatically merged by the
proposed method. The resulting merged graph is illustrated in Figure 13d.

7. CONCLUSIONS

The automated technology for personalized segmentation, skeletonization, and graph extraction was
proposed in this paper. The following algorithms were presented in detail: fully automatic coronary
artery segmentation, skeleton extraction from segmented image and automatic reconstruction of 1D
network, automatic 1D network extraction from a set of centerlines with a common root, 1D network
graphs postprocessing such as graph correction and local adaptation. Patient-specific data were used
to demonstrate efficiency of 1D-network reconstruction algorithms. Constructed networks can be
used in modeling of blood flows as well as other physiological processes in tubular structures.
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