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A Splitting Method for Numerical Simulation of Free Surface
Flows of Incompressible Fluids with Surface Tension
Abstract: The paper studies a splitting method for the numerical time-integration of the system of partial
di�erential equations describing the motion of viscous incompressible �uid with free boundary subject to
surface tension forces. The method splits one time step into a semi-Lagrangian treatment of the surface ad-
vection and �uid inertia, an implicit update of viscous terms and the projection of velocity into the subspace
of divergence-free functions. We derive several conservation properties of the method and a suitable energy
estimate for numerical solutions. Under certain assumptions on the smoothness of the free surface and its
evolution, this leads to a stability result for the numericalmethod. E�cient computations of free surface �ows
of incompressible viscous �uids need several other ingredients, such as dynamically adapted meshes, sur-
face reconstruction and level set function re-initialization. These enabling techniques are discussed in the
paper as well. The properties of the method are illustrated with a few numerical examples. These examples
include analytical tests and the oscillating droplet benchmark problem.
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1 Introduction
Flows of �uids with free surfaces are ubiquitous in nature and engineering. Examples include sea waves,
rain drops, and falling thin �lms, to mention a few. Modeling such phenomena numerically is a challenging
task due to the non-trivial coupling of �ow dynamics and free surface evolution. Substantial progress has
been made during the last two decades in developing e�cient and accurate numerical methods for comput-
ing �ows with free surfaces and interfaces, see, e.g., [14, 36] and references therein. A variety of numerical
approaches is known from the literature that are based on explicit surface tracking [40] or implicit surface
capturing techniques [30, 39], as well as �nite di�erence [16], �nite volume [12], and �nite element [3, 4]
methods. It has also been admitted by a number of authors, see, e.g., [24, 32, 39], that employing a splitting
strategy for numerical time integration of the system of �uid and surface evolution equations is a natural way
for building an e�cient method.

Themathematical model studied in this paper is based on the Navier–Stokes equations coupled with the
level set function equation. Our numerical approach combines a time splitting algorithmwith dynamicmesh
adaptation.Despite signi�cant progress indeveloping computational schemes for free-surface�owproblems,
not much of numerical analysis has been done. One possible reason is that even a partial analysis requires
a scheme to reproduce a suitable balance of energy, momentum and angular momentum which is satis�ed
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by the solution of the �ow problem. We discuss these properties of the di�erential solution and originating
di�culties for numerical analysis in Section 3. The �rst objective of this paper is to present the �rst stability
analysis of a popular splittingmethod for numerical time integration of the systemof equationswhichmodels
a free surface �ow of viscous incompressible �uid subject to surface tension forces. Further, a spacial �nite
di�erence discretization is introduced and a performance of the fully discrete algorithm is studied in a series
of numerical experiments.

The splitting scheme that we study decouples each time step into separate substeps of computing ve-
locity, pressure and the level set function. For the sake of adaptation, we use graded octree cartesian grids
which are adapted towards the free boundary. When the free surface evolves, the grid is dynamically re�ned
or coarsened according to the distance to the free boundary.We note that discretizations on octree (quadtree)
cartesian grids already enjoyed an employment in free surface �ow computations [24, 27, 28, 32, 38], yet
many aspects of using octree grids for accurate and predictive computations of free surface �ows require
more thorough study. To discretize divergence, gradient and Laplace operators, we use �nite di�erence ap-
proximations with compact stencils. Particular attention is paid to the following important computational
ingredients of the algorithm: preserving the distance property of the discrete level set functions, and approx-
imation of normal vectors and curvatures of the free surface. The distance property is recovered by solving
the discrete Eikonal equation (so called re-initialization). We introduce and compare several re-initialization
methods based on the marching cubes algorithm for free surface triangulation. The paper discusses bene�ts
as well as limitations of these technologies and the entire approach.

The remainder of the paper is organized as follows. Section 2 presents themathematical model. Section 3
contains some preliminaries and reviews certain conservation properties of the model. In Section 4 we intro-
duce the splitting algorithm and analyze its stability and conservation properties. A �nite di�erence method
for space discretization and further important techniques such as re-initialization methods for the level set
function are considered in Section 5. Numerical results for several test problems including the freely oscillat-
ing droplet benchmark test are presented in Section 6. Section 7 contains some closing remarks.

2 Mathematical Model
Consider aNewtonian incompressible �uid �ow in abounded time-dependent domainΩ(t) ∈ ℝ3 for t ∈ (0, T].
The �uid dynamics is governed by the incompressible Navier–Stokes equations

{{
{{
{

ñ(
àu
àt

+ (u ⋅ ∇)u) − íΔu + ∇p = g
div u = 0

inΩ(t), t ∈ (0, T], (2.1)

where u is the velocity vector �eld, p is the kinematic pressure, g is the external force (e.g., gravity), ñ is the
density, and í is the kinematic viscosity. At the initial time t = 0 the domain and the velocity �eld are known:

Ω(0) = Ω0, u|t=0 = u0, div u0 = 0. (2.2)

We assume that the entire boundary ofΩ is a free surface Γ(t)whichpassively evolveswith the normal velocity
of �uid, i.e., the following kinematic condition is valid:

vΓ = u ⋅ n on Γ(t), (2.3)

where n is the outward normal vector for Γ(t) and vΓ is the normal velocity of Γ(t). Boundary conditions on
Γ(t) result from balancing the surface tension and the �uid stress forces:ò(u, p)n|Γ = óên − pextn on Γ(t), (2.4)

where ò(u, p) = í[∇u + (∇u)T] − p I is the stress tensor of the �uid, ê is the sum of principal curvatures
(the mean curvature), ó is the surface tension coe�cient, pext is an exterior pressure which we set to be zero,
pext = 0.
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For computational purposes, we shall employ the implicit de�nition of the free surface evolution with
the help of an indicator function. Let Γ(t) be given as the zero level of a globally de�ned function õ(t, x).
A smooth (at least Lipschitz continuous) function õ such that

õ(t, x){{{{{{
{

< 0 if x ∈ Ω(t)

> 0 if x ∈ ℝ3 \ Ω(t)

= 0 if x ∈ Γ(t)

for all t ∈ [0, T]

is called the level set function. The initial condition (2.2) allows us to de�ne õ(0, x). The kinematic condition
(2.3) implies that for t > 0 the level set function can be found as the solution to the transport equation [29]:

àõ
àt

+ ũ ⋅ ∇õ = 0 inℝ3 × (0, T] (2.5)

where ũ is any (divergence-free) smooth velocity �eld such that ũ = u on Γ(t).
A numerical method studied in this paper solves the system of equations (2.1), (2.2), (2.4), and (2.5). We

note that the implicit de�nition of Γ(t) as zero level of a globally de�ned function õ leads to numerical al-
gorithms which can easily handle complex topological changes of the free surface. The level set function
provides an easy access to useful geometric characteristics of Γ(t). For instance, the unit outward normal to
Γ(t) is n = ∇õ/|∇õ|, and the mean surface curvature is ê = div n. From the numerical point of view, it is often
bene�cial if the level set function possesses the signed distance property, i.e., it satis�es the Eikonal equation

|∇õ| = 1.

3 Conservation Laws
A smooth solution to the free surface �ow problem (2.1)–(2.4) satis�es several conservation properties and an
energy balance. Before we analyze the numerical method, it is instructive to see how these properties follow
from equations (2.1)–(2.4). To this end, recall some elementary integral relations. We shall assume that Γ(t) is
su�ciently smooth and closed for all t ∈ [0, T]. First, we need the Reynolds’ transport theorem for a smooth
vector �eld f de�ned in⋃t∈[0,T] Ω(t) × {t}:

d
dt

∫
Ω(t)

f dx = ∫
Ω(t)

àf
àt

dx + ∫
Γ(t)

vΓf ds. (3.1)

Thanks to the kinematic condition (2.3) on the normal velocity of Γ and the divergence free property of u, one
gets from (3.1) the identity

d
dt

∫
Ω(t)

f dx = ∫
Ω(t)

(
àf
àt

+ (u ⋅ ∇)f) dx = ∫
Ω(t)

̇f dx, (3.2)

where ̇f denotes the material derivative of f, ̇f = àf
àt + (u ⋅ ∇)f.

The immediate consequence of (3.2) with f = (1, 0, 0)T is the conservation of the evolving domain volume:

|Ω(t)| = |Ω(0)| for all t ∈ (0, T].

For a smooth surface Γ, recall the de�nition of the surface gradient and divergence:

∇Γq = ∇q − (n ⋅ ∇q)n and divΓ f = tr(∇Γf),
which are the intrinsic surface quantities and do not depend on extensions of a scalar function q and a vector
function f o� a surface, see, e.g., [14]. We shall need the following identity for integration by parts over Γ (see
[11] for more details):

∫
Γ

(q(divΓ f) + f ⋅ ∇Γq) ds = ∫
Γ

ê(f ⋅ n)q ds. (3.3)
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Since Γ(t) passively evolves with the �uid velocity u, the Leibniz formula gives for su�ciently smooth f
de�ned on⋃t∈[0,T] Γ(t) × {t} the relation

d
dt

∫
Γ(t)

fdx = ∫
Γ(t)

( ̇f + f divΓ u) dx. (3.4)

Stability of a numerical method for �uid equations is usually based on a suitable energy estimate for the
numerical solution. Let us �rst devise an appropriate energy balance for the free surface �ow problem (2.1)–
(2.4). Without loss of generality wemay assume ñ = 1. DenoteDu = [∇u+ (∇u)T]/2. Taking a scalar product of
(2.1) with u, integrating overΩ, using boundary conditions and employing the transport formula (3.2) yields

d
dt

∫
Ω(t)

u2 dx + 2í ∫
Ω(t)

|Du|2 dx + ó ∫
Γ(t)

ê(n ⋅ u) ds = ∫
Ω(t)

(g ⋅ u) dx, (3.5)

where |Du|2 = ∑1≤i,j≤3|(Du)ij|2. Now we apply the surface integration by parts rule (3.3) with q = 1 to treat the
surface term and further use the Leibniz formula (3.4) with f = 1:

∫
Γ

ê(n ⋅ u) ds = ∫
Γ

divΓ u ds = d
dt

∫
Γ

1 dx = d
dt

|Γ(t)|.

Substituting these relations into equality (3.5) and integrating in time leads to the following energy balance
for the free surface �ow problem (2.1)–(2.4):

∫
Ω(t)

u2 dx + 2í
t

∫
0

∫
Ω(t�) |Du|2 dx dt� + ó|Γ(t)| = ∫

Ω(0)

u2 dx + ó|Γ(0)| +
t

∫
0

∫
Ω(t�)(g ⋅ u) dx dt� for all t ∈ [0, T]. (3.6)

All terms in (3.6) have a clear physical meaning: the total kinetic energy ‖u‖2Ω(t) is in balance with the surface
free energy ó|Γ(t)| up to the viscous dissipation term and the external forces work.

Since there is no explicit dissipationmechanism for the free surface energy in (3.6), it is not easy to obtain
from (3.6) a priori estimates for a solution which would be su�cient for showing the (local) well-posedness
of the problem. Thus, to show the (local) existence of a unique solution, Solonnikov [37] applied the trans-
formation to the Lagrangian coordinates. While such a transformation is standard in mathematical analysis
of �uid problems with free surfaces, numerical methods are commonly applied to the Eulerian formulation
of the free surface problem rather than to the Lagrangian formulation. For the reasons outlined above, a rig-
orous stability and error analysis of such Eulerian numerical methods is problematic and some simplifying
assumptions have to be made.

For the sake of completeness, we recall that free surface �ows with surface tension forces satisfy bal-
ances of global momentum and angular momentum. Integrating the momentum equation in (2.1) over Ω(t),
employing (3.2) with f = u and noting that ∫Γ êni ds = 0 yields the balance of the total momentum:

∫
Ω(t)

u dx = ∫
Ω(0)

u0 dx + t

∫
0

∫
Ω(t�) g dx dt� for all t ∈ (0, T].

We need the following equalities:

̇(u × x) = u̇ × x + u × (u ⋅ ∇x) = u̇ × x + u × u = u̇ × x and div([Du] × x) = (divDu) × x, (3.7)

where the vector product with a matrix is understood column-wise. Taking the vector product of the momen-
tum equation in (2.1) with x and using the identities in (3.7), one �nds after integration overΩ(t):

d
dt

∫
Ω(t)

u × x dx + ó ∫
Γ(t)

ê(n × x) dx = ∫
Ω(t)

g × x dx.
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Denote by [x]× a 3 × 3 skew-symmetric matrix, such that [x]×a = x × a for any a ∈ ℝ3. One readily checks that
divΓ[x]× = 0, where the divergence is applied for each row of the matrix. Therefore, equality (3.3) implies that
the term ∫Γ ê(n × x) ds vanishes. Thus we get the balance of the angular momentum:

∫
Ω(t)

u × x dx = ∫
Ω(0)

u0 × x dx + t

∫
0

∫
Ω(t�) g × x dx dt� for all t ∈ (0, T].

Bothmomentumand angularmomentumare not sign de�nite quantities and so their balances do not directly
yield a priori estimates useful for stability. Still, from the analysis viewpoint, they are helpful to establish the
control over the L2-norm of u by the L2-norm ofDu via Korn’s inequality.

Finally, we note that although the global vorticity of the free-surface �ow is trivially conserved in the
absence of source terms, the global balance of enstrophy or helicity should account for the generation of
vorticity along free surface [23]. In our a priori estimates we do not need these balances.

4 Numerical Time Integration and Energy Stability Bound
Several numerical methods have been proposed for the time integration of (2.1) and (2.5). Numerical ap-
proaches range from fully implicit schemes to fractional step methods. Fully implicit schemes provide better
stability at the expense of several nested iterative processes [14]. In this paper, we consider a semi-implicit
spitting method based on semi-Lagrangian approach. The algorithm is built on the well-known splitting pro-
cedures due to Chorin, Yanenko, Pironneau and others, see, for example, [5, 31]. For the sake of presentation
and analysis, in this section we suppress spacial discretization and postpone some important implementa-
tion details. We shall discuss spacial discretization and practical implementation later in Section 5.

Introduce a grid on [0, T]: tn = nΔt, n = 0, . . . , N, with the discretization parameter Δt = T/N. We adopt
the notation un, pn, õn for approximations to velocity �eld, pressure, and level set function at t = tn. Function
õn implicitly de�nes a numerical �uid domain at time t = tn through Ωn := {x ∈ ℝ3 : õn(x) < 0}. We write
Γn := àΩn, and nn, ên denote the outward normal vector and the mean curvature of Γn.

Functions u0 = u(t0) and õ0 = õ(t0) are de�ned from the initial conditions. For n = 0, . . . , N − 1 and givenun, õn such that div un = 0, we �nd un+1, pn+1, õn+1 in several steps:
The semi-Lagrangian step:Ωn → Ωn+1, un → un+1aux . Consider a divergence free extension of the velocity to

the exterior of �uid domain: un|Ωn → ũn|ℝ3 . In practice, the extension is performed to a bulk computational
domain, rather thanℝ3. For every y ∈ ℝ3, solve the characteristic equation backward in time:

àx(ó)
àó

= ũn(x(ó)), x(tn+1) = y, for ó ∈ [tn+1, tn]. (4.1)

The mapping X : y → x(tn) de�nes an isomorphism onℝ3. Now, set

õn+1(y) = õn(X(y)), un+1aux (y) = ũn(X(y)). (4.2)

Next we handle viscous terms and project the velocity into a (discretely) divergence-free function sub-
space and recover new pressure:

The viscous step: Solve for ûn+1 inΩn+1:

{
{
{

−í divDûn+1 + 1
Δt

[ûn+1 − un+1aux ] = g(tn+1) inΩn+1,Dûn+1 = 0 on Γn+1.
(4.3)

The projection step: Solve for pressure pn+1:

{
{
{

Δpn+1 =
1
Δt
div ûn+1 inΩn+1,

pn+1 = óên+1 on Γn+1.
(4.4)
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Update velocity un+1 = ûn+1 − Δt ∇pn+1. (4.5)

To see that the numerical scheme (4.1)–(4.5) approximates the system of equations (2.1)–(2.5), we rewrite
the scheme as a coupled implicit method for a quasi-compressible approximation of the �uid motion equa-
tions. Substituting (4.1) in (4.3) and further using (4.4), (4.5) with the index shifted n → n − 1, we obtain

{{{{{
{{{{{
{

ûn+1(⋅) − ûn(X(⋅))
Δt

− í divDûn+1 + ∇pn(X(⋅)) = g(tn+1)
div ûn+1 − ΔtΔpn+1 = 0

õn+1(⋅) − õn(X(⋅)) = 0

inΩn+1,

ò(û, p)n+1 = ó(ên)n+1 on Γn+1.

The O(Δt) term ΔtΔpn+1 in the continuity equation shows the formal �rst order of approximation of the �ow
model (2.1)–(2.5). For wall-bounded �ows, a well-known result (see [33, Theorem 6.1]) is that the classical
Chorin scheme is �rst order convergent in the time-discrete L∞(0, t; L2(Ω))-norm for the velocity and the time-
discrete L∞(0, t; H−1(Ω)) norm for the pressure. The convergence order of the scheme may decrease for some
other type of boundary conditions [15]. For the tension driven free-surface �ows, a rigorous convergence anal-
ysis is lacking. This is not an unexpected situation, since convergence results typically build on stability anal-
ysis, whichwas largelymissing. It is possible to derive a formally second order splittingmethod following the
arguments of [33, 41] for wall-bounded �ows. In this paper, we analyze the �rst order splittingmethod. In nu-
merical experiments we take time steps subject to the Courant type condition based on ℎmin. We found that
decreasing Δt further does not lead to much better accuracy.

We explained in the previous section that additional simplifying assumptions are expected to make the
stability analysis of the numerical scheme feasible. Herewe analyze the splittingmethod (4.1)–(4.5) assuming
that (4.2) de�nes such evolution of Ωn, n = 1, . . . , N, that all Γn are C3 smooth, and the principle curvatures
as well as their tangential derivatives are uniformly bounded with respect to Δt ∈ (0, ó0] for some ó0 > 0.

Thanks to (4.2) we note that

Ωn+1 = {y ∈ ℝ3 : õn+1(y) < 0} = {y ∈ ℝ3 : õn(X(y)) < 0} = {X−1(x) ∈ ℝ3 : õn(x) < 0} = X−1(Ωn).

Since the transport velocity ũ in (4.1) is divergence free, the Jacobian J = |det( dXdy )| of X satis�es J = 1. This
implies the conservation of the �uid volume,

|Ωn+1| = |Ωn|, (4.6)

and of the kinetic energy on the semi-Lagrangian step,

∫
Ωn |un(x)|2 dx = ∫

Ωn+1 |un(X(y))|2J dy = ∫
Ωn+1 |un+1aux |2 dy. (4.7)

Taking the scalar product of (4.3) with 2Δtûn+1 and integrating overΩn+1 gives

‖û‖2Ωn+1 + 2íΔt‖Dûn+1‖2Ωn+1 + ‖ûn+1 − un+1aux ‖2Ωn+1 = ‖un+1aux ‖2Ωn+1 + 2Δt(ûn+1, g)Ωn+1
≤ ‖un+1aux ‖2Ωn+1 + Δtù1‖ûn+1‖2Ωn+1 + Δtù−11 ‖g‖2Ωn+1 (4.8)

for some ù1 > 0 to be chosen later. We use the notation

‖Dû‖2Ωn+1 = ∫
Ωn+1 |Dû|2 dx.

Taking the scalar product of (4.5) with 2Δtun+1, integrating overΩn+1 and using the Dirichlet pressure bound-
ary condition from (4.4) yields

‖un+1‖2Ωn+1 + ‖ûn+1 − un+1‖2Ωn+1 = ‖ûn+1‖2Ωn+1 + 2Δt ó ∫
Γn+1 ê

n+1(u ⋅ n)n+1 ds. (4.9)

Authenticated | molshan@math.uh.edu author's copy
Download Date | 9/27/14 3:03 PM
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Recall the following trace inequality (see, e.g., [13]):

‖u ⋅ n‖
H− 12 (Γ) ≤ CT(Ω)(‖u‖Ω + ‖div u‖Ω).

Applying this trace inequality together with the Cauchy inequality and the assumption on the smoothness
of Γn, we treat the boundary term in (4.9) as

!!!!!!!
∫

Γn+1 ê
n+1(u ⋅ n)n+1 ds!!!!!!! ≤ ‖ên+1‖

H
12 (Γn+1)‖(u ⋅ n)n+1‖H− 12 (Γn+1)

≤
1
4ù2

‖ên+1‖2
H

12 (Γn+1) + ù2‖(u ⋅ n)n+1‖2H− 12 (Γn+1)
≤ c ù−12 + CT(Ωn+1) ù2‖un+1‖2Ωn+1 (4.10)

for some ù2 > 0 to be chosen later. In the last inequality of (4.10) we also used that un+1 is divergence free. We
use (4.10) to estimate the boundary terms in (4.9) and apply the triangle inequality to obtain

‖un+1‖2Ωn+1 + ‖ûn+1 − un+1‖2Ωn+1 ≤ ‖ûn+1‖2Ωn+1 + c óù−12 Δt + CT(Ωn+1) ù2 Δt‖un+1‖2Ωn+1
≤ (1 + CT(Ωn+1) ù2 Δt)‖ûn+1‖2Ωn+1 + c óù−12 Δt + CT(Ωn+1) ù2 Δt‖ûn+1 − un+1‖2Ωn+1 .

For ù2 ≤ [CT(Ωn+1)Δt]
−1 this yields the estimate

‖un+1‖2Ωn+1 ≤ (1 + CT(Ωn+1) ù2 Δt)‖ûn+1‖2Ωn+1 + c óù−12 Δt. (4.11)

We employ (4.11) in (4.8) and get

‖un+1‖2Ωn+1 + 2íΔt‖Dûn+1‖2Ωn+1 ≤ ‖un+1‖2Ωn + Δt((ù1 + ù2CT(Ωn+1))‖ûn+1‖2Ωn+1 + ù−11 ‖g‖2Ωn+1 + c ù−12 ó). (4.12)

Now we need to estimate ‖ûn+1‖Ωn+1 from above by the di�usion term ‖Dûn+1‖Ωn+1 . This can be done with the
help of Korn’s and Poincaré’s inequalities if û satis�es certain gauge conditions which exclude rigid motions.
To deduce such constraints on the solution, we assume that external forces are total momentum and angular
momentum free,

∫
Ω(t)

g dx = ∫
Ω(t)

g × x dx = 0 for all t ∈ [0, T]. (4.13)

In this case, the solution of the di�erential problem conservesmomentumand angularmomentum. Belowwe
check that our splitting scheme respects these conservation properties. Similar to the conservation of energy
in (4.7), one veri�es that the semi-Lagrangian step conserves momentum and angular momentum:

∫
Ωn un dx = ∫

Ωn+1 un+1aux dx, ∫
Ωn un × x dx = ∫

Ωn+1 un+1aux × x dx. (4.14)

Further, we integrate (4.3) overΩn+1 and use boundary conditions to show

∫
Ωn+1 ûn+1 dx = ∫

Ωn+1 un+1aux dx. (4.15)

Taking the vector product of (4.3) with x, integrating over Ωn+1, using boundary conditions and the second
identity in (3.7) bring us to

∫
Ωn+1 ûn+1 × x dx = ∫

Ωn+1 un+1aux × x dx. (4.16)

Finally, integrating (4.5) and the vector product of (4.5) with x over Ω(t) and using the same arguments to
handle the boundary terms as in the previous section leads to

∫
Ωn+1 un+1 dx = ∫

Ωn+1 ûn+1 dx, ∫
Ωn+1 un+1 × x dx = ∫

Ωn+1 ûn+1 × x dx. (4.17)
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Combining (4.14)–(4.17) we show the conservation property for the solution of the splitting scheme:

∫
Ω(tn)
un dx = ∫

Ω(0)

u0 dx, ∫
Ω(tn)
un × x dx = ∫

Ω(0)

u0 × x dx for all n = 1, . . . , N. (4.18)

Without loss of generality, wemay assume that the initial velocity �eld ismomentumand angularmomentum
free:

∫
Ω(0)

u0 dx = 0, ∫
Ω(0)

u0 × x dx = 0.

Due to the conservation property (4.17)–(4.18), this ensures that for any tn both u and û have zero momentum
and angular momentum. In particular, it holds

∫
Ωn+1 ûn+1 dx = 0, ∫

Ωn+1 ûn+1 × x dx = 0.

This constraint on all rigid motions of the medium is su�cient for the Korn inequality to hold (see [17, Theo-
rem 4]). This and the Poincaré inequality imply

‖ûn+1‖Ωn+1 ≤ CK(Ωn+1)‖Dûn+1‖Ωn+1 . (4.19)

We shall assume the constants CT(Ωn), CK(Ωn) are uniformly bounded for all Δt ∈ (0, ó0] and n = 1, . . . , N.
Therefore we can apply (4.19) in (4.12) and choose ù1, ù2 su�ciently small but independent of n and Δt, such
that

‖un+1‖2Ωn+1 + íΔt‖Dûn+1‖2Ωn+1 ≤ ‖un‖2Ωn + c Δt(‖g‖2Ωn+1 + ó). (4.20)

Summing (4.20) over n = 0, . . . ,M − 1, with any M, 1 ≤ M ≤ N, we obtain the stability estimate for our
semi-discrete scheme:

‖uM‖2ΩM +
M
∑
n=1

íΔt‖Dûn‖2Ωn ≤ C ó + ‖u0‖2Ω0 + c
M
∑
n=1

Δt‖g‖2Ωn , (4.21)

with a constantC independent ofΔt, g, u0, ó, í (compare with the energy balance (3.6) of the smooth solution
to the di�erential �ow problem).

We summarize the results in the following theorem.

Theorem 4.1. Assume that (4.2) de�nes such evolution of Ωn, n = 1, . . . , N, that all Γn are C3 smooth. Assume
that the principle curvatures, their tangential derivatives and constants CT(Ωn), CK(Ωn) from the trace and
Korn’s inequalities are uniformly bounded with respect toΔt ∈ (0, ó0] for some ó0 > 0. If the volume forces satisfy
(4.13), then the solution to the numerical splitting scheme (4.1)–(4.5) satis�es the conservation of momentum,
angular momentum (4.18) and the energy stability bound (4.21).

Remark 4.1. In [3], Bänsch analyzed a �nite element method for the free boundary Navier–Stokes problem
subject to surface tension forces. Let us comment on similarities and di�erences of that analysis and the one
presented here. Both stability analyses rely on a priori assumptions on the regularity of free surface evolution.
The assumptions in [3] are somewhat weaker than ours. This is partially because that paper considered an
implicit coupling of surface evolution and �uid dynamics on every time step in the framework of a space-time
�nite element method. The method studied here decouples these processes on every time step. Furthermore,
in [3] conservation properties of the discretizationmethod were not addressed and, therefore, the author had
to use a Gronwall argument to obtain an energy bound similar to (4.21). This led to an exponential growing
stability constant,which is not the case in the present analysis. Time stepping schemes studied in both papers
have consistency error O(Δt).
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Figure 1. Left: 2D quadtree grid adapted to free boundary. Right: The loss of discrete free surface geometric information when
õℎ is transported from a region with �ner mesh to the one with a coarser mesh.

5 Spacial Discretization and Implementation Details
Practical implementation of the time-splitting method for computing free surface �ows needs a choice of a
numerical integrator for the semi-Lagrangian step, spacial discretization and several further important in-
gredients such as an approximation of surface tension forces, mesh adaptation, and handling a discrete level
set function. This section addresses these and a few other implementation details. It should be noted right
away that the conservation properties of the splitting scheme may be disturbed once a spacial discretization
is introduced. Despite some existing interesting work on conservative (fully discrete) schemes based on the
semi-Lagrangian method (see [21] and references therein), building a fully discrete method for incompress-
ible viscous �ows that conserves momentum, angular momentum, and yields a correct balance of energy, is
largely an open question.

5.1 Spacial Discretization and Mesh Adaptation

A possibly complex geometry of the free surface and accurate approximation of the surface tension forces
require a su�ciently �ne grid in a neighborhood of Γ(t). In this case, the use of uniform grids becomes
prohibitively expensive, especially in 3D. Locally re�ned meshes need less computational resources. How-
ever, such meshes have to be dynamically re�ned and coarsened if the free surface evolves. The remeshing
is, in general, a CPU time and memory demanding procedure for consistent regular tetrahedra divisions.
This step becomes considerably less expensive if one uses cartesian octree meshes with cubic cells. The two-
dimensional analog of an octree mesh re�ned towards free surface is illustrated in Figure 1. Details on how
quadtree/octree structures can be e�ciently handled computationally are found in [35]. Note that due to the
inherited hierarchical structure, data interpolation between two consecutive meshes is straightforward and
e�cientmultilevel techniques can be adopted for the solution of resulting algebraic linear systems, e.g. [2, 6].

Our adaptation strategy is based on the graded re�nement (the sizes of two neighboring cells may di�er
at most by the factor of two) of the mesh towards the current and predicted location of the free surface. By
the predicted location at time twemean the one occupied by Γn+1 if the characteristic equation (4.1) is solved
on a current grid with current velocity and Δt. The reason for grid re�nement towards the predicted interface
location is to reduce the loss of the local surface geometric information which occurs if Γn+1 is approximated
by a trilinear function on a coarser grid; such possible loss is illustrated in Figure 1. Note, that the predicted
location may slightly di�er from the actually computed Γn+1 in the level set part of the algorithm, since the
mesh adaptation step is performed before the velocity is updated in the �uid part of the algorithm. However,
this allows us to preserve most of the local surface geometry and avoids double remeshing.

In general, an adaptation strategymay rely on estimators of �owcomplexity such as local vorticitymagni-
tude.Wedonot implement suchpossiblymore advanced estimators in thepresent paper. Rather, on each time
iteration and before the semi-Lagrangian step we re�ne all cubic cells intersected by Γn and by (predicted)
Γn+1 so that all these cells have the width ℎmin. All other cells are marked for coarsening. The coarsening is
performed in such away that the octree remains balanced (two neighboring cells may di�er in size at most by
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Figure 2. Left: Location of the variables in each cubic cell: p is the pressure, {u±, v±, w±} are the velocity components, f are the
scalar functions, e.g. level set function. Right: uℎ(y) is de�ned by a linear interpolation based on the fan triangulation with the
center in xV, i.e., interpolation of uℎ(xV), uℎ(x1),uℎ(x10) in this example.

a factor of two) and the maximum cell width in the �uid domain is ℎmax and in the rest of the computational
domain it is ℎext. Parameters ℎmin, ℎmax, and ℎext are provided in advance.

For the spacial discretization, we apply a �nite di�erence method. The use of cubic cells appeals to the
staggered distribution of velocity and pressure degrees of freedom: The pressure is approximated in cell cen-
ters, velocity components are approximated in face centers; the level set function is approximated in cell
vertices (see Figure 2). The resulting discretization can be observed as an extension to octree meshes of a
classical MAC scheme for �uid equations [16, 20] and was studied in [28]. For the discrete gradient, diver-
gence and di�usion terms we use second order approximations with compact stencil as described in [26–28].

5.2 Numerical Semi-Lagrangian Step

The characteristic equation (4.1) is integrated numerically with the second order accuracy:x(tn + Δt
2
) = y − Δt

2
ũn(y), x(tn) = x(tn + Δt

2
) −

Δt
2
[3ũn(x(tn + Δt

2
)) − ũn−1(x(tn + Δt

2
))]. (5.1)

The space point x(tn + Δt
2 ) is not necessarily a grid point, therefore the computation of ũn(x(tn + Δt

2 )) andũn−1(x(tn + Δt
2 )) requires an interpolation of velocity values. This interpolation procedure is described below.

Once (5.1) is computed, we assign õn+1
aux (y) and un+1aux (y) according to

õn+1
aux (y) = õn(X(y)), un+1aux (y) = un(x(tn)). (5.2)

To compute õn(x(tn)) and un(x(tn)) in (5.2) the interpolation is used. Note that at this step the spacial dis-
cretization error may perturb the sign distance property of õ and the volume conservation (4.6).

A natural choice of interpolation procedure would be, �rst, to de�ne velocity values in cell vertices by
averaging the corresponding velocity nodal values in the neighboring cell faces and, second, to compute the
velocity value in any point of a cell as the trilinear interpolation of the vertex values. We use this simple (and
fast) procedure when the level set function advection step is performed (level set function is de�ned in cell
vertices and no averaging is needed). However, such interpolation was found to produce large numerical dif-
fusion when applied with the semi-Lagrangian method in the �uid part of the splitting algorithm. Therefore,
at this step we use another interpolation method described below. The procedure is somewhat more com-
putationally expensive, but involves a smaller interpolation stencil and was found to reduce the numerical
di�usion.

For a given point y in the computational domain we compute uℎ(y) as follows. Assume y belongs to a
cell V and we are interested in computing the x-component of velocity in y, i.e., uℎ(y). Consider a plane P

such that y ∈ P and P is orthogonal to the Ox axis. Let xV ∈ P be the orthogonal projection of the center of V
on P and xk, k = 1, . . . , m, m ≤ 12, are the projections of centers of all cells sharing a face with V. The values
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uℎ(xV) and uℎ(xk) can be de�ned by a linear interpolation of the velocity values at u-nodes. Once uℎ(xV) and
uℎ(xk), k = 1, . . . , m, are computed, we de�ne uℎ(y) distinguishing between two cases: First, if y belongs to a
triangle from the triangle fan based on xV and xk, k = 1, . . . , m, then uℎ(y) is de�ned by a linear interpolation
between the values of uℎ in the vertices of this triangle, cf. Figure 2. Second, if there is no such triangle (this
can be the case for y ∈ Γ(t), since uℎ needs to be computed on Γ(t) before the velocity �eld is extended to the
bulk computational domain from Ω(t)), then uℎ(y) is de�ned by the inverse distances method based on the
values of uℎ in the closest three points from the set {xV, xk}, k = 1, . . . , m.

Remark 5.1. It was foundbene�cial in some cases to integrate (4.1)more accurately, dividing the time interval
[tn, tn+1] into l subintervals and applying (5.1) on each subinterval. Using l = 2, 3we observed a notable overall
accuracy improvement compared to l = 1.

5.3 Free Surface Handling

Now we discuss how to handle the free surface and compute its geometric quantities. To �nd the evolution
of the free surface, we apply the semi-Lagrangian method as described in Section 5.2.

5.3.1 Volume Correction

The numerical integration of (2.5) may cause a divergence (loss or gain) of the �uid volume, i.e., the violation
of (4.6). This divergence canbe reduced in severalways: (i) The re�nement of the computational grid near Γ(t).
Naturally, the level of mesh re�nement is limited by the available computational resources. (ii) More accurate
time integration of the level set equation (2.5). We use the second order accurate method with the integration
step Δt

l with l = 2, 3. Further increase of l was not found to produce more accurate results. (iii) Correction of
the level set function by the method of particles [7]. However, the particle level set method alone improves,
but does not guarantee a complete volume conservation [27]. Thus, we also use (iv): the adjustment of the
level set function by adding a suitable constant to preserve the �uid volume. The adjustment of the level set
function is performed by solving for a value ä the equation

meas{x : õ(x) < ä} = Volreference

and correcting õnew = õ − ä. The bisection algorithm was used to �nd ä and a Monte Carlo method was
applied to evaluate meas{x : õ(x) < ä}. We note that the volume correction method can be extended to the
case of multi-connected �uid domains and more general adjustment functions [25].

5.3.2 Redistancing

Both the advection and the volume correction of the level set functionmay cause the loss of its signeddistance
property. For the continuous level set function this property canbewritten in the formof theEikonal equation:

|∇õ(x)| = 1, x ∈ ℝ3, (5.3)

with the boundary condition on the free surface: õ(x) = 0 for x ∈ Γ(t). Keeping the discrete level set func-
tion close to the signed distance function is important for the computation of the geometric quantities of the
free boundary and numerical stability. To recover the signed distance property we perform a redistancing
procedure, also known as re-initialization.

First, the location of the interface Γ(t) is explicitly found. To accomplish this, for each cell intersected by
the discrete free surface (such cells are �gured out by checking the signs of the discrete level set function in
cell vertices) a local internal surface triangulation is built using the marching cubes technique [18, 22]. The
triangulated global approximation of the surface turns out to be a conformal triangulation in space.
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Figure 3. Possible cases for distance reconstruction in an interface cell node.

The redistancing procedure is split into two steps: the assignment of distance values in the vertices of
interface cells (i.e., cells that are intersected with the interface), and �nding a solution to a discrete counter-
part of (5.3) in all remaining nodes. The second step is performed by the fast marching method [1] adapted to
octree grids. The �rst step can be performed by several methods described below.

Method 1 is suggested in [1]. Consider a grid node and an interface cell sharing this node and examine
three cell edges sharing the node. If an edge intersects the interface, one measures the distance from the
intersection to the node. There are four possible cases induced by the number of intersections.
(i) If none of three edges intersects the interface, no action is needed.
(ii) In case of a single intersection (Figure 3a), one computes the distance to that intersection: d = S+x .
(iii) In case of two intersections (Figure 3b), one evaluates the distance as the height of the appropriate trian-

gle:

d = (√(
1
S+x

)
2
+ (

1
S−z

)
2
)
−1
.

(iv) In case of three intersections (Figure 3c), the distance is evaluated as the height of the pyramid built on
these points:

d = (√(
1
S+x

)
2
+ (

1
S+y

)
2
+ (

1
S−z

)
2
)
−1
.

For each node x one computes the values d for all interface cells sharing the node and assigns the minimum
value to õ(x).

In this paper we consider two more methods.
Method 2 computes the distance fromeachnode of interface cells to the interface triangulation explicitly.

Given a cell vertex we compute the shortest distance to every triangle of the surface triangulation (of course,
for a �xed point not all triangles have to be visited). Algorithmically, it is computed by looking for the smallest
distance between the vertex and (i) its projection on the plane containing the triangle, (ii) its projection on
the lines containing the edges, (iii) three vertices of the triangle.

Method 3 employs the same interface triangulation, but the distance to Γ(t) is measured di�erently. We
take into account that interface triangulation is only an approximation to the zero level of the piecewise tri-
linear level set function õℎ. For each surface triangle T and a neighboring grid node x we consider the line
passing through x and orthogonal to the plane which contains T (see Figure 4). The trace of õℎ on the line
segment contained in the cell is a cubic function ÷(t) = f3t

3 +f2t
2 +f1t +f0 where ÷(0) = õℎ(x). The smallest

positive root of the equation ÷(t) = 0 de�nes the point Hx where the line crosses the zero isosurface of õℎ.
If the initial value of õℎ(x) is greater than the computed distance to Hx, we set it equal to this distance. Oth-
erwise we update õℎ(x) by the distance to Hx if it does not exceed distances to the vertices of the considered
triangle.

Remark 5.2. Method 1 requires only the intersection points of surface {õℎ(x) = 0} with cell edges, which can
be easily found from the nodal values of õℎ. The methods 2 and 3 need the preprocessing step of the surface
triangulation by themarching cubes algorithm. Althoughmore expensive, methods 2 and 3 producemore ac-
curate and convergent approximations to the distance function (see Section 6.1) and their utilization appears
to be crucial for modeling phenomena driven by surface tension forces (see the example in Section 6.3).
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Figure 4. The di�erence between triangulated isosurface and
the true isosurface {õℎ(x) = 0}.

5.3.3 Extension of uℎ from Γℎ(t)
Finally, for updating the level set function we need an extension of the velocity �eld from Γℎ(t) (t is �xed) to
the entire computational domain. We build the normal extension of the velocity �eld from free surface to the
nodes of computational domain. To this end, for a given node x ∈ Ωℎ we �nd the “nearest” point yx ∈ Γℎ(t)
by the following iterative algorithm. Set y0 = x and de�ne yn+1 = yn − á∇õℎ(yn), n = 0, 1, . . . , with a relaxation
parameter á > 0. The iteration is terminated once |yn+1 − yn| ≤ ù and we set yx = yn+1, uℎ(x) = uℎ(yx), where
uℎ(yx) is computed via the interpolation. In our calculations we chose ù = 10−8 and á = (√5 − 1)/2.

6 Numerical Experiments
To illustrate the performance of the numerical method, we perform several tests with known analytical solu-
tions and consider the standard benchmark problem for free-surface �ow numerical solvers, the 3D oscillat-
ing droplet problem.

6.1 Accuracy of Redistancing Methods

In the �rst experiment, we study the accuracy of the discrete Eikonal solvers (redistancing methods) intro-
duced in Section 5.3.2. We choose the surface Γ to be the sphere (x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 = 0.3142 and
the computational domain is the unit cube.We compare numerical solutions to the exact solution of (5.3) and
compute the error only in the interface cells T such that T ∩ Γ ̸= 0. Let V(V) denote the set of all vertices of a
cell V. We use the following indicators to evaluate discretization errors of numerical solutions:

ùCi =
maxVmaxx∈V(V)|õ

i
ℎ(x) − õ(x)|

maxVmaxx∈V(V)|õ(x)| , ùLi = (
∑V|V|∑x∈V(V)|õ

i
ℎ(x) − õ(x)|2

∑V|V|∑x∈V(V) õ2(x) )
1/2

,

where õi
ℎ is the discrete signed distance function found by the redistancing method number i, i = 1, 2, 3. The

indicators resemble the scaled C- and L2-norms of the error, respectively, while the scaling factors account
for vanishing of õ in interface cell nodes when the grid is re�ned:maxx∈V(V)|õ(x)| = O(ℎmin).

Table 1 shows the errors on the sequence of re�ned grids. We note that in both norms method 1 exhibits
no convergence, method 2 shows less than the �rst order convergence, and method 3 shows the �rst order
convergence.

6.2 Accuracy of Normal Vectors and Mean Curvature Reconstruction

Recall that the unit outward normal can be computed via the level set function: nΓ = ∇õ/|∇õ| on Γ(t).
The mean curvature of the interface can be de�ned as the divergence of the normal vector, ê(õ) = div n =
div(∇õ/|∇õ|). Thus the numerical approximation of the mean curvature is computed as follows. First, ∇ℎõℎ is
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ℎmin ùC1 ùL1 ùC2 ùL2 ùC3 ùL3
32−1 1.4e−1 1.0e−1 5.1e−2 3.5e−2 5.0e−2 3.5e−2
64−1 1.9e−1 1.1e−1 2.7e−2 1.8e−2 2.5e−2 1.8e−2
128−1 1.9e−1 9.7e−2 1.5e−2 9.9e−3 1.3e−2 8.8e−3
256−1 2.2e−1 9.8e−2 8.6e−3 6.7e−3 6.4e−3 4.4e−3
512−1 2.2e−1 9.7e−2 5.5e−3 5.6e−3 3.3e−3 2.4e−3

Table 1. Accuracy of three redistancing methods.

ℎmin ùC∇ ùL∇ ùCê ùLê
32−1 6.8e−3 2.2e−3 1.8e−2 1.0e−3
64−1 1.4e−3 5.9e−4 8.8e−3 3.6e−4
128−1 3.2e−4 1.5e−4 6.6e−3 1.4e−4
256−1 7.9e−5 3.9e−5 3.3e−3 6.2e−5

Table 2. Approximation of the gradient operator and the mean curvature.

computed in cell vertices using the second order approximation of the gradient through the Taylor expansion
in all possible combinations of octree cells sharing the node. Further, the computed values are averaged in
face centers. Once ∇ℎõℎ/|∇ℎõℎ| is known in face centers, êℎ(õℎ) = divℎ ∇ℎõℎ/|∇ℎõℎ| is computed in cell cen-
ters by standard second order central di�erences. Since ∇õ is computed with second order accuracy, ê(õ) is
approximated with the �rst order.

To test the discretization errors for n and ê, we take the same spherical interface and introduce the fol-
lowing indicators of the level set gradient andmean curvature discretization accuracy. Denote byV(V) the set
of all vertices for every cell V such that V has nonempty intersection with Γ(t) or a neighboring cell of V has
nonempty intersection with Γ(t). The set of all center points of the same set of cells is denoted by C. De�ne

ùC∇ = max
V
maxx∈V(V)

!!!!∇ℎõ(x) − ∇õ(x)!!!!, ùL∇ = (
∑V|V|∑x∈V(V)|∇ℎõ(x) − ∇õ(x)|2

∑V|V|∑x∈V(V)|∇õ(x)|2 )
1/2

,

ùCê = maxx∈C !!!!êℎ(õ)(x) − ∇ ⋅ (∇õ(x)/|∇õ(x)|)!!!!, ùLê = (
∑V|V|∑x∈C[êℎ(õ)(x) − ∇ ⋅ ∇õ(x)

|∇õ(x)| ]2
∑V|V|∑x∈C ∇ ⋅ (∇õ(x)/|∇õ(x)|)2 )

1/2
,

where êℎ(õ) is the discrete mean curvature operator described above.
Table 2 shows the discretization errors for surface curvature and gradient ofõ. The gradient discretization

demonstrates the second order accuracy in both the C-norm and the scaled L2-norm. Naturally, the mean
curvature approximation is only �rst order accurate in both norms.

6.3 Oscillating Droplet Problem

We consider a droplet for which evolution is driven only by surface tension forces. The �uid is assumed to
be in rest at time t = 0 and g = 0. The initial shape of the droplet is a perturbation of a sphere: In spherical
coordinates (r, è, ÿ) the initial shape is given by

r = r0(1 + ùS2(
ð
2
− è)),

where S2 is the second spherical harmonic. In all experiments we set r0 = 1, ó = 1, ù = 0.3. At t = 0 the mean
curvature of the surface is not constant, and an unbalanced surface tension force causes droplet oscillation.
The �uid motion in this experiment is solely driven by the surface tension forces. This oscillatory behavior
illustrates the continuous transition between kinetic and surface free energy, as seen from the energy balance
(3.6), while the expected exponential decay of oscillations is due to the dissipation energy through di�usion
in (3.6).
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Figure 5. The droplet shape, grid and pressure distribution for t = {0, 0.726, 1.286}.

Figure 6. The left picture compares the top tip trajectories on the z axis for ℎmin = 1
64 and ℎmin =

1
128 . The right picture shows

the droplet tip trajectory on the z axis for ℎmin = 1
256 , ℎmax =

1
16 and the �tted curve.

Therefore, the quality of the numerical solution is sensitive to how accurate the conservation laws are
enforced. This test is also challenging for the surface tension approximation and the free surface capturing
method where an accurate and smooth curvature �eld is critical. For these reasons, the oscillating droplet
problem often serves as a benchmark test for free surface and two-phase �uid �ow solvers, see, e.g., [3, 8–
10, 34]. Two statistics are of common interest: The droplet oscillation period T and the oscillations damping
factor ä. Assuming the perturbation is small (ù ≪ 1), a linear stability analysis from [19] predicts the period
and the damping factor according to

Tref = 2ð√
ñr30
8ó

, äref =
r20
5í

. (6.1)

We solve the problem on a sequence of meshes with ℎmin ∈ { 1
32 ,

1
64 ,

1
128 ,

1
256 } and the constant coarse mesh

size ℎmax =
1
16 (mesh size in the �uid domain interior) and ℎext =

1
16 (mesh size in the �uid domain exterior).

We also repeat experiments with gradually re�ned ℎmax = ℎmin/2 and observed similar results (not shown),
although the timings increased signi�cantly. The thirdmethod (see Section 5.3.2) of discrete level set function
re-initializationwas used.We note that the secondmethod gave qualitatively similar results, whereas the �rst
one resulted in non-physical oscillatory solutions.

We experimentwith í = 0which allows us both to look at the quality of surface tension forces approxima-
tion and to quantify the e�ect of numerical di�usion of the scheme. Figure 5 illustrates the droplet shape, the
grid (ℎmin = 1

128 , ℎmax =
1
16 ) and the pressure distribution at times 0, 0.726, and 1.286. Further, the trajectories

of the droplet tips are shown in Figure 6. One can see that the decay of the oscillation amplitude becomes
lesser if the mesh is re�ned towards the surface (left picture), though remains visible for the �ner mesh we
used (right picture). The exponent curve which is �tted to the local maximums of the droplet top tips (right
picture) quanti�es the decay factor as explained below. With ℎmin =

1
32 the method fails to recover the correct

physical behavior of solution for times more than one period of the droplet oscillation.
The computed period and the decay factor are shown in Table 3.We observe that adaptive grid re�nement

leads to the convergence of the computed period to the reference one, while the decay factor grows slowly.
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ℎmin T T − Tref ä ínum #cells TimeΔt
32−1 2.80 0.579 − − 3,248 0.21
64−1 2.475 0.254 12.75 0.0157 14,544 0.89

128−1 2.378 0.157 21.63 0.0092 61,976 4.28
256−1 2.275 0.054 28.59 0.0070 258,552 18.4

Table 3. The period, the decay factor of the computed solution, estimated e�ective numerical viscosity of the scheme; also CPU
times (sec.) per time step versus the total number of cells inΩℎ(0).

This suggests that the scheme remains somewhat dissipative.We note that in general the particlemethod can
be used to reduce the numerical dissipation, however for the present benchmark test the particle correction
of the level set function was found to produce large enough disturbance of õℎ leading to inaccurate modeling
of the surface tension forces. To estimate the amount of the numerical dissipation in the scheme, we compute
the damping factor ä by the least square �tting of the function c exp(− t

ä ) to the computed maximum values
of the droplet top tip: zmax(tn) − r∞, where tn are the times when zmax(t) attains a local maximum, r∞ is the
radius of a spherical droplet with the same volume as the initial droplet. We evaluate the e�ective numerical
viscosity of the scheme ínum assuming that, similarly to (6.1), it holds ä ≈ r20(5ínum)

−1.
The energy balance (3.6) suggests that for í = 0 and u(0) ≡ 0 the kinetic energy peaks and amplitude

should not decrease in time. If they do decrease (the decay of kinetic energy is even more visible, since the
kinetic energy is quadratic invariant, see Figure 7), then the total energy is not completely conserved by the
numerical scheme. Recall that for the energy we were able to show only a stability estimate rather than a
suitable (discrete) balance property. Spacial discretization also introduces some extra numerical dissipation
which destroys the energy balance. In Section 4we checked that the time-splitting scheme conservesmomen-
tum and angular momentum. The spatial discretization is not conservative with respect to these quantities.
Nevertheless, Figure 8 shows that in computations the deviation from initial total momentum and angular
momentum (both are zero for the oscillating droplet problem) remains reasonably small. To the best of our
knowledge, building conservative (energy, momentum and angular momentums) adaptive FD schemes for
the Navier–Stokes coupled with level set equations model is a largely open problem which deserves further
studies.

Finally, to check the scalability of the method we show in the right column of Table 3 the CPU times
obtained on Altix XE310 node with 2 × 2.66 GHz Intel Quad-Core Xeon X5355 processors with 8Gb memory.
The average timings are shown for one time step versus the total number of ‘active’ cells at t = 0. The data
demonstrates almost linear dependence of the CPU time on the number of grid cells.

7 Conclusions
We considered a computational approach for simulation of free surface �ows. The numerical model is based
on the Navier–Stokes equations coupled with a level set function equation discretized on dynamically re-
�ned/coarsened octree cartesian grids. Other key components of the approach are the splitting method for
time discretization, the redistancing algorithm for the discrete level set function, and accurate approxima-
tion of free surface normal vector and mean curvature. Several redistancing and normal vector/mean curva-
ture approximation techniques were comparatively studied. The redistancingmethod based on themarching
cubes algorithm for free surface reconstructionwas shown to provide accurate approximation to the distance
function and hence leads to e�cient surface tension forces treatment. A stability estimate for semi-discrete
solutions of the time splitting method was proved. The proof is based on the semi-discrete balance of kinetic
and surface free energy. It is interesting to note that the conservation of the momentum and angular momen-
tum property turn out to be important to show the stability of the numerical method. This is in contrast to
the situation with enclosed �ows, where the stability usually directly follows from an (discrete) energy bal-
ance. Probably for this reason, analyzing and improving momentum and angular momentum conservation
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Figure 7. The left picture compares the kinetic energy evolution for ℎmin = 1
64 and ℎmin =

1
128 . The right picture shows the kinetic

energy evolution for ℎmin = 1
256 and ℎmax =

1
16 .

Figure 8. The left picture shows x, y and zmomentums. The right picture shows x, y and z angular momentums. The L2-norm of
the velocity is plotted to provide appropriate scaling.

properties of numerical schemes is often overlooked in the literature. Although our stability analysis involved
additional assumptions on the smoothness of the evolution of free surface, we consider it as a �rst important
step towards a more complete numerical analysis of free surface �ows with surface tension.
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developed solver have been supported by the Russian Science Foundation grant 14-11-00434.
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