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Abstract We present the latest enhancement of the
nonlinear monotone finite volume method for the near-
well regions. The original nonlinear method is appli-

cable for diffusion, advection-diffusion and multiphase
flow model equations with full anisotropic discontinu-
ous permeability tensors on conformal polyhedral meshes.

The approximation of the diffusive flux uses the nonlin-
ear two-point stencil which reduces to the conventional
two-point flux approximation (TPFA) on cubic meshes

but has much better accuracy for the general case of
non-orthogonal grids and anisotropic media.

The latest modification of the nonlinear method takes
into account the nonlinear (e.g. logarithmic) singularity

of the pressure in the near-well region and introduces
a correction to improve accuracy of the pressure and
the flux calculation. In this paper we consider a lin-

ear version of the nonlinear method waiving its mono-
tonicity for sake of better accuracy. The new method is
generalized for anisotropic media, polyhedral grids and

nontrivial cases such as slanted, partially perforated
wells or wells shifted from the cell center. Numerical
experiments show noticeable reduction of numerical er-

rors compared to the original monotone nonlinear FV
scheme with the conventional Peaceman well model or
with the given analytical well rate.

This work has been supported in part by RFBR grants 15-
35-20991, 16-31-00527 and 17-01-00886, Russian Federation
President Grant MK-2951.2017.1, and ExxonMobil Upstream
Research Company

V. Kramarenko, Moscow Institute of Physics and Technology,
E-mail: kramarenko.vasiliy@gmail.com

K. Nikitin, Institute of Numerical Mathematics RAS,
E-mail: nikitin.kira@gmail.com

Y. Vassilevski, Institute of Numerical Mathematics RAS,
E-mail: yuri.vassilevski@gmail.com

Keywords Finite volume scheme · Near-well correc-
tion · Well-driven flows · Improved well modelling

1 Introduction

Cell-centered finite volume (FV) methods with the non-
linear flux discretization on cell faces attract growing at-

tention in past few years [6]. An idea of the monotone
schemes with nonlinear coefficients was suggested in [9]
and further developed into a simple yet efficient mono-

tone second order method with the nonlinear two-point
discretization of the diffusion and convection fluxes [11,
3,12,17]. Monotonicity of this method is understood in

the sense of non-negativity of the discrete solution. The
method was tested for the two- and three-phase black
oil models [15] on conformal hexahedral meshes, poly-

hedral meshes produced by dynamic octrees [21] and by
dynamic octrees with cut cells [16]. The later modifica-
tion of the scheme combined the nonlinear flux approxi-

mation with the ideas from [1] (see also [20]) that assure
the Discrete Maximum Principle (DMP) and resulted
in the nonlinear multi-point scheme with compact sten-

cil [13,2,7]. Applications of the scheme with the DMP
for two-phase flows were studied in [14].

The well model is the sensitive part of the black-oil

simulator and has the major impact on calculated well
rates. The solution in the near-well region is highly in-
fluenced by the well singularity. The idea to exploit that

solution feature in the well model for FV schemes was
suggested in [4]. This approach was combined with the
nonlinear FV scheme in [5] for the case of well-oriented

prismatic grids in isotropic media. Our new method
generalizes these ideas for anisotropic media, polyhe-
dral grids and arbitrary wells not necessarily adjusted

neither with cells centers or with edges.
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The key idea of the new near-well correction (NWC)

method is to use a nonlinear (e.g. logarithmic) correc-
tion term for the reconstructed solution inside the flux
discretization scheme in the near-well region. For the

isotropic case the linear-logarithmic reconstruction is
used. The resulting method is exact on both linear and
logarithmic solutions by construction and is generalized

for the anisotropic media and for slanted wells. Since
the method is applicable on arbitrary polyhedral grids,
it requires no local grid refinement or any other grid

modifications, which are widely used for modelling of
areas with high pressure gradients [10]. Numerical ex-
periments show the noticeable reduction of the numeri-

cal errors compared to the original monotone nonlinear
FV scheme with the conventional Peaceman well model
or with the given analytical well rate.

2 FV discretization scheme for diffusion
problems

In order to introduce the numerical scheme, we consider
the stationary diffusion equation.

Let Ω be a three-dimensional polyhedral domain
with the Lipschitz boundary Γ = ΓN ∪ ΓD. The diffu-

sion equation for unknown pressure p with the Dirich-
let or Neumann boundary conditions is written in the
mixed form:

q = −K∇p, div q = f in Ω,

p = g on ΓD,
q · n = 0 on ΓN .

(1)

Here K(x) is a symmetric positive definite (possibly
anisotropic) diffusion tensor, f(x) is a source term, g(x)

is a given Dirichlet data for the Dirichlet part of the
boundary ΓD.

The cell-centered FV scheme uses one degree of free-
dom per cell T , pT , collocated at cell barycenter xT .

Integrating the mass balance equation (1) over T and
using the divergence theorem, we obtain:

∑
f∈∂T

σT,f qf =

∫
T

f dx, qf =

∫
f

q · nf dS, (2)

where qf is the normal flux across the face f , and σT,f

is either 1 or -1 depending on the mutual orientation
of the unit normal vectors nf and nT (nT denotes the

outward normal vector for T ).

Two nonlinear schemes for the flux (2) discretization
were suggested in [11,13] for 2D and [3,2] 3D case. In
this work we present a linear multi-point scheme that

shares similar construction principles.

3 Nonlinear near-well correction method

Consider a near-well region which spans well singular-
ity (see Fig. 1). The key idea of the method follows [4,
5]. We modify the nonlinear monotone FV scheme from

[3] and take into account the solution singularity near
an isolated well. In contrast to [5], our method is de-
signed for anisotropic media, arbitrary polyhedral cells
and arbitrary well location.

Fig. 1 Logarithmic singularity in the near-well region.

In the original nonlinear FV method the discrete
fluxes are calculated on the basis of the piecewise linear

reconstruction of the unknown field. The NWC method
takes into account the nonlinearity of the solution near
the specific object such as the well.

We consider the pressure field to be the sum of lin-
ear and nonlinear functions for each cell in a near-well

region:

pT = a x+ b y + c z + d︸ ︷︷ ︸
plin

+ e F (x, y, z)︸ ︷︷ ︸
pF

, (3)

where F (x, y, z) is a function representing the singular-
ity.

The finite volume discretization requires the normal
component of the flux q = −K∇p to be integrated on

each face f of T :∫
f

q · nfdS = −
∫
f

(K∇pT ) · nfdS

= −
∫
f

(K∇plin) · nfdS −
∫
f

(K∇pF ) · nfdS. (4)

Combining (3) and (4) yields the mean normal flux

qf =

∫
f

q · nfdS

= −
∫
f

K
(

a

b
c

)
· nfdS − e

∫
f

(K∇F (x, y, z)) · nfdS

= aℓ1 + bℓ2 + cℓ3 + eℓ4. (5)

In the following we shall omit index f whenever it does
not result in confusion.

Integrals for ℓ1, ℓ2 and ℓ3 are calculated exactly. In-
tegral for ℓ4 can also be calculated exactly for some

simple cases of well, grid and tensor (see [5]), but for
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more general cases the numerical integration should be

used (see Section 4). The coefficients ℓi depend solely
on the mesh and problem data, and are calculated ex-
plicitly, while the coefficients (a, b, c, e) are recovered

from the solution at the neighboring cells.
Let T+ and T− be neighboring cells sharing a face

f , x+, x− denote centroids of these cells. We take four

points xi (xi ̸= x+) and call four vectors ti = xi − x+

the quadruplet. Points xi denote centers of the neigh-
boring cells or faces of T , pi = p(xi) and p+ = p(x+).

We assume the same representation (3) for vectors
of each quadruplet, which gives us:(

p1−p+

p2−p+

p3−p+

p4−p+

)
=

[
x1−x+ y1−y+ z1−z+ F1−F+

x2−x+ y2−y+ z2−z+ F2−F+

x3−x+ y3−y+ z3−z+ F3−F+

x4−x+ y4−y+ z4−z+ F4−F+

](
a
b
c
e

)
, (6)

where F∗ = F (x∗, y∗, z∗).
The collocation points of the quadruplet should be

chosen carefully in order to avoid degenerated matrix

in (6). Our algorithm for quadruplet points selection is
as follows:

Algorithm 1 Quadruplet points selection
1: Select the first point x1 = x−
2: Compose set Σ of all neighboring points of x+, xi ̸= x−
3: for every three different points x2, x3, x4 from Σ do
4: Compute determinant of the quadruplet matrix (6)
5: end for
6: if all quadruplets have degenerate matrix (6) then
7: Add more points to the set Σ
8: goto 3
9: end if
10: Choose quadruplet with the largest matrix determinant

Solving the system (6) with the largest matrix de-
terminant provides us the coefficients a+, b+, c+, e+ for

the cell T+:

a+ =
∑
j

(pj − p+) m1,j , b+ =
∑
j

(pj − p+) m2,j ,

c+ =
∑
j

(pj − p+) m3,j , e+ =
∑
j

(pj − p+) m4,j ,

(7)

where mi,j are the elements of the inverse matrix from
(6). Taking T− instead of T+ and considering −q · nf

provides us the second flux approximation.

Applying (7) to equation (5) gives us

q± = ±
∫
f

q · nfdS (8)

= ±
[
ℓ1
∑
j

(pj − p±)m
±
1,j + ℓ2

∑
j

(pj − p±)m
±
2,j

+ ℓ3
∑
j

(pj − p±)m
±
3,j + ℓ4

∑
j

(pj − p±)m
±
4,j

]
,

or

q± = ±
[∑

j

pj
∑
i

ℓi m
±
i,j︸ ︷︷ ︸

k±
j

−p±
∑
j

∑
i

ℓi m
±
i,j︸ ︷︷ ︸

k±
j

]

= ±
(∑

j

k±j (pj − p±)
)
. (9)

The resulting flux approximation is obtained as the

weighted sum of q+ and q− with coefficients µ++µ− = 1

qf = µ+

(∑
j

k+j (pj−p+)
)
− µ−

(∑
j′

k−j′ ·(pj′−p−)
)
.

(10)

To construct the linear multi-point flux discretization,
we considered µ+ = µ− = 1/2. One may also construct

a nonlinear scheme (similar to [3,2]) using pressure-
dependant coefficients, but this is the subject for a fu-
ture study.

4 Numerical issues of implementation

4.1 Well cell model

The near-well correction method replaces the conven-

tional Peaceman well model from [18] and is applicable
to the cases of arbitrary polyhedral cells, slanted wells
and wells separated from grid cell centers.

The original Peaceman formula was derived on the
basis of two key assumptions:

– The well flux is compensated by the sum of the lin-
ear flux approximations for the well cell faces,

– It is considered for the perfect vertical well where

all the neighboring cells pressures are given by the
Dupuit formula to catch the logarithmic behavior of
the solution in the near-well region.

These assumptions require selection of an equivalent ra-
dius, which is used for definition of the well cell pressure
and ensures flux continuity.

In contrast to the Peaceman approach, the new well
model is incorporated in the near-well correction scheme

which takes the singularity into account by construction
and does not impose additional restrictions on the well
cell degree of freedom.

The new approach allows us to consider the general
case of the well not passing through the cell center. For
each well cell, we introduce an additional point on the

well segment associated with the bottom hole pressure.
Using this point and considering only outer flux (µ+ =
1, µ− = 0) in (10), we get an additional relation for the

facial fluxes of the well cell. Therefore, for the well cell
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faces we have two flux approximations with different

stencils (see Fig. 2). For each quadruplet calculation the
points inside the well are projected to the well surface
in order to avoid the singularity.

p_
p+

p
w p_

p+
w

p

Fig. 2 Well cell: stencils for the reservoir pressure (left) and
the additional well pressure (right).

Summarizing fluxes for the well cell gives us the well
cell equation:

∑
f

1
2

(∑
j

k+j (pj − p+)
)
− 1

2

(∑
j′

k−j′ (pj′ − p−)
)

=
∑
f

[
1
(∑

l

k+l (pl − pw)
)
− 0

(
...
)]

.

(11)

If we use the given well flux qw condition an addi-
tional equation for unknown pw will occur:∑
well cells

∑
f

(∑
l

k+l (pl − pw)
)
= qw. (12)

4.2 Isotropic case

The particular choice of singularity function F in (3)
depends on geometric and physical assumptions. A per-

fect well in isotropic media allows us to use the Dupuit
formula, providing F (x, y, z) = ln(r), where r(x, y, z) is
the distance to the well axis.

4.3 Anisotropic case

The 2D anisotropic case with K = diag(kx, ky) and
ky > kx is considered in [19] where the singularity func-

tion is the solution of the isolated perfect well problem.
The main steps of derivation of F in this case are as
follows.

First, the space transformation is applied:

x′ =

(
ky
kx

)0.25

x, y′ =

(
kx
ky

)0.25

y, (13)

and the new coordinates are transformed to the elliptic
ones:

x′ = B cosh (ρ) cos (ϕ) , y′ = B sinh (ρ) sin (ϕ) , (14)

where B =
√
r2w(ky − kx)/(kxky)1/2 is the coefficient

suggested in [19] and rw is the well radius.

In coordinates (ρ, ϕ) the analytical solution is:

p = pw − qw

2π
√
kxky

(ρ− ρw) . (15)

The elliptic coordinate ρ is expressed from (14) as:

ρ = arcosh

√√
x′2 + (y′ −B)2 +

√
x′2 + (y′ +B)2

4B2

(16)

The singularity function F (x, y, z) is given by (16).
The integral ℓ4 in (5) is calculated by the numerical
integration over the face with a high order quadrature

formula

ℓ4 = −
∫
f

K∇F (x, y, z) · nfdS = −
∫
f

v · nfdS. (17)

Here vector v = K∇F (x, y, z) is given in the elliptic
coordinates:

v =

(
vx
vy

)
=


kx

4
√

ky
kx

sinh ρ cosϕ

B(sinh2 ρ+sin2 ϕ)

ky
4
√

kx
ky

cosh ρ sinϕ

B(sinh2 ρ+sin2 ϕ)

 . (18)

In the 3D case the permeability tensor may be full
anisotropic and the well may be not aligned with the

grid and/or tensor axes. Under assumption of the in-
finite well we consider the analytical solution to be
pseudo-2D in the plane orthogonal to the well (see Fig. 3)

with a corresponding 2D tensor K′
xy = diag(k′x, k

′
y) re-

covered by the following algorithm:

Algorithm 2 Construction of K′
xy

1: Apply coordinate rotation which makes the well vertical
2: Calculate tensor K′ in the rotated coordinates
3: Take the 2×2 leading submatrix of the tensor correspond-

ing to directions orthogonal to the well
4: Diagonalize the 2× 2 submatrix to obtain k′

x and k′
y

The 2D tensor K′
xy can now be used in the appropri-

ate coordinate system to derive the analytical solution
(15) and solution gradient (18). The integral ℓ4 is cal-
culated similarly to (17) by a high order quadrature

formula in 3D.



A finite volume scheme with improved well modelling in subsurface flow simulation 5

kz

ky
kx

E

ky’
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Fig. 3 Slanted well in anisotropic media.

4.4 Partially perforated well

In real world applications no well is perfect due to the
finite length of the perforation. In this case the exact
solution for the finite perforation segment may be used.

Consider the line segment [A,B] with the uniform

flux density q/2L in isotropic media, K = kI, A =
(0, 0,−L), B = (0, 0, L). One can consider each point
of segment as a point source. The flux from this point

can be represented as a uniform flux from infinitesimal
part of the segment ∆q = q ∆l/2L. Darcy flux at dis-
tance R is directed away from the segment and has the

following magnitude [8]:

|∆u| = ∆q

4π

1

R2
. (19)

If we consider a point at distance r to the well line

and at height z from the midpoint of the well segment,
the distance R from an infinitesimal part of the segment
will be

R =

√
r2 + (z − l)

2
, (20)

where l is the distance from the midpoint of the well
segment to this part (see Fig. 4).

r

z

(v  , v  )
r       z

l

dl

L

−L

R

B

A

Fig. 4 Flux from the infinitesimal part of the well segment.

The components of ∆u = (∆ur,∆uz)
T at the point

(r, z) are:

∆ur = |∆u| r
R
, ∆uz = |∆u| z − l

R
. (21)

The flux v(r, z) = (vr, vz)
T at the point (r, z) is the

sum of contributions from each infinitesimal part of the
well segment. Integrating (21) over the segment [A,B]
we obtain:

vr =

L∫
−L

q r

8LπR3
dl =

q

8Lπ

l − z

r

√
r2 + (z − l)

2

∣∣∣∣L
−L

=
q

8Lπ

 L− z

r

√
r2 + (z − L)

2
+

L+ z

r

√
r2 + (z + L)

2

 ,

(22)

vz =

L∫
−L

q (z − l)

8LπR3
dl =

q

8Lπ

1√
r2 + (z − l)

2

∣∣∣∣L
−L

=
q

8Lπ

 1√
r2 + (z − L)

2
− 1√

r2 + (z + L)
2

 .

Now we search for a smooth field p(r, z) such that
−k∇p = v(r, z). Integration of (22) provides us the

pressure field:

p = C − F (r, z), (23)

with the singularity function:

F (r, z) =
q

8Lπ k
[2 ln r −

ln

(√
r2 + (L− z)

2
+ (L− z)

)
−

ln

(√
r2 + (L+ z)

2
+ (L+ z)

)]
. (24)

The constant C can now be expressed via the pres-
sure pw fixed on the well surface at a point with local
coordinates (rw, 0). The final analytical pressure of the

isolated partially perforated well is the following:

p = pw − q

8Lπ k

[
ln

r2

L− L+
− ln

r2w

L+
√

r2w + L2

]
,

(25)

where L± = L± z +
√

r2 + (L± z)2.

The solution (25) may be used in (3) for correction

of the fluxes in the near-well region.

We note that for L → ∞, F (r, z) tends to the solu-

tion for the perfect well.
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5 Numerical experiments

In order to test our approach, we study it on analyt-
ical solutions. We consider 2D isotropic case with a
shifted well on cubic and hexagonal prismatic grids,

3D isotropic case with slanted and partially perforated
wells, 2D and 3D cases with highly anisotropic media,
and 2D case with two vertical wells.

All variables used in experiments are nondimensional:
the well rate is 1 and the bottom hole pressure is 2.
These two parameters provide the analytical solution
around the well. The Dirichlet condition for known an-

alytical solution is set on the domain boundary.

The computational domain sizes are 100 × 100 ×
3 for the vertical well and 100 × 100 × 12.5 for the

slanted and partially perforated wells, the well radius
rw = 0.01, the permeability tensor is a diagonal matrix
K = diag(kx, ky, ky). We consider different horizontal

anisotropy ratios ky/kx. For 2D cases we consider a
pseudo-2D domain: grid dimensions are N×N×1 with
the no-flow conditions of the top and the bottom bound-

aries.

In our experiments we consider 2 scenarios:

1. An analytical rate for the well cell is given. This

allows us to compare the nonlinear monotone FV
scheme (NFV) and the new near-well correction (NWC)
scheme without the influence of the well cell model.

For this scenario we compute relative L2 errors norms
for the pressure field compared to the known analyt-
ical solution: εNFV

p,anl and εNWC
p,anl .

2. The well cell model for a given bottom hole pres-
sure is applied. The Peaceman formula is applicable
only for cubic grids and is used with the nonlinear

monotone scheme [15], while the new well cell model
is used for all experiments in combination with the
NWC scheme. In this case we compute both relative

L2 error norms for the pressure (εNFV
p,pcm and εNWC

p )
and the well rate errors (εNFV

q and εNWC
q ).

5.1 2D isotropic case, shifted well

We consider a cubic grid with a vertical well shifted
from the well cell centroid. The well is shifted along

the diagonal of the domain by the value δd/2, where d
is the cell diagonal length. The analytical solution for
K = I is:

p = pw − qw
2πhw

ln
r

rw
, (26)

where r =
√
(x− δd/2)2 + (y − δd/2)2.

By construction, any well index based method incor-

porating the well within a single cell, will not provide

the non-symmetric solution. In contrast, the new well

cell model can reproduce a non-symmetric solution.

δ εNFV
p,anl εNWC

p,anl εNFV
p,pcm εNWC

p εNFV
q εNWC

q

0 1.4e-4 1.3e-11 1.8e-4 1.3e-11 5.0e-3 8.9e-11
0.1 1.5e-3 6.3e-12 1.5e-3 1.5e-11 5.0e-3 1.2e-10
0.3 5.6e-4 2.3e-11 5.8e-4 2.0e-11 5.0e-3 4.7e-10
0.5 7.1e-4 2.7e-11 7.1e-4 2.1e-11 5.0e-3 4.9e-10
0.7 1.1e-3 5.2e-11 1.1e-3 1.1e-11 5.0e-3 1.5e-9

Table 1 Flux and solution error for the NFV and the NWC
methods for shifted well on the uniform rectangular grid 33×
33× 1.

For the sake of comparison we apply the Peaceman
cubic grid formula with NFV method. Table 1 presents
the numerical errors for the shifted well on the uniform

rectangular grid 33×33×1: the relative error L2-norms
for the NFV and the NWC schemes with the analytical
well cell rates, the relative error L2-norm and the well

rate error for the NWC method coupled with the new
well cell model. One can see that the NWC scheme is
exact for the shifted isolated perfect well.

Fig. 5 Solution for the NWC scheme and the new well cell
model for shifted well on hexagonal prismatic grid, δ = 0.5.

We also considered the similar problem on a hexago-
nal prismatic grid. Figure 5 presents the computational

grid and the non-symmetric solution for the NWCmethod.
The domain is not a parallelepiped in this case and
the boundaries are approximated by faces of hexagonal

prisms. Table 2 shows the relative L2-norms of pressure
error for the NFV scheme with the analytical well cell
rate and for the NWC method coupled with the new

well cell model.
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δ εNFV
p,anl εNWC

p

0 1.1e-4 8.2e-11
0.1 1.4e-3 2.0e-11
0.3 4.2e-3 1.0e-11
0.5 7.1e-3 1.1e-11

Table 2 Solution error for the NFV and the NWC methods
for shifted well on hexagonal prismatic grid.

5.2 2D anisotropic case, non-orthogonal grid

The next example uses a non-orthogonal grid constructed

from the uniform rectangular grid by shifting nodes
while keeping the cell faces planar. We consider high
anisotropy cases with kx = 1, ky = 10, 100, 1000, 10000

for different grid sizes N along horizontal axes. The an-
alytical solution is given by (15) and (16).

ky/kx εNFV
p,anl εNWC

p εNFV
2p,anl εNWC

2p εNWC
q

10 5.3e-4 1.9e-9 5.6e-2 2.0e-7 4.7e-7
100 1.7e-4 9.0e-9 5.9e-2 2.7e-6 1.3e-5
1000 9.0e-4 7.0e-8 8.0e-2 6.2e-5 6.6e-4
10000 4.0e-5 5.7e-8 1.1e-1 1.5e-3 1.7e-3

Table 3 Flux and solution error for the NFV and the NWC
methods for anisotropic case on non-orthogonal N × N × 1
grids with N = 67.

Flux and solution errors for the NFV and the NWC
methods are compared in Table 3 for different anisotropy
ratios. Due to the high anisotropy the solution variation

is very small: p ∈ [1.995, 2.0] for ky/kx = 10000. To cap-
ture the error compared to this variation, we introduce
ε2p, the relative error normalized by ||panl − panl,min||
instead of ||panl||. Since the Peaceman method is not
applicable for this case, we can present only the NWC
method flux error εNWC

q . The latter is the absolute (not

relative) error and one can see that the calculated flux
error is small even for the extremely high anisotropy.

Solution errors for both methods on the non-ortho-
gonal grid N ×N × 1, N = 67, are presented in Fig. 6.

5.3 3D case, slanted well

In the 3D case we consider the domain with the hexa-
hedral orthogonal grid and a slanted (not vertical) well.
The grid has 10 layers and Dirichlet boundary condi-
tions are given for all boundaries. For the isotropic case

the analytical solution is given by formula (26) with r
being the distance from the point to the well.

The error dependence on the well tilt angle for the
NFV and the NWC methods are presented in Table 4.
Angle α = 0◦ denotes to the vertical well. Vertical cross-

section of the grid with the error fields for α = 60◦

Analytical solution

NFV error NWC error

Fig. 6 Analytical solution (top) and solution errors for the
NFV (bottom-left) and the NWC (bottom-right) methods for
anisotropic case ky/kx = 10000 on non-orthogonal grid with
N = 67.

Fig. 7 Solution error for α = 60◦ for the NFV (top) and the
NWC (bottom) methods. 3D isotropic case with 10 layers for
the slanted well.

for the NFV and the NWC methods are presented in
Fig. 7 (top) and Fig. 7 (bottom), respectively.

α εNFV
p,anl εNWC

p εNWC
q

0◦ 6.5e-4 1.0e-12 3.0e-11
30◦ 1.2e-4 3.6e-9 3.1e-4
45◦ 1.7e-4 3.7e-12 1.3e-4
60◦ 1.1e-4 1.7e-10 7.5e-7

Table 4 Solution error for the NFV and the NWC methods,
and the flux error for the NWC method. 3D isotropic case
with 10 layers for the slanted well.

For the anisotropic case we consider the similar ex-
periment layout with anisotropic tensor K = diag(10,

100, 1). The analytical solution for each cutplane orthog-
onal to the well axis is given by (15) and (16) with
the corresponding 2D tensor K′

xy = diag(10, 100 cosα+

sinα).
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Fig. 8 Analytical solution for α = 60◦ for 3D anisotropic
case with 10 layers for the slanted well, K = diag{10, 100, 1}.

Fig. 9 Solution error for α = 60◦ for the NFV (top) and the
NWC (bottom) methods. 3D anisotropic case with 10 layers
for the slanted well, K = diag(10, 100, 1).

α εNFV
p,anl εNWC

p εNFV
2p,anl εNWC

2p εNWC
q

0◦ 2.5e-5 2.8e-11 1.2e-1 1.3e-7 4.9e-7
30◦ 5.9e-6 1.7e-10 2.4e-2 8.6e-7 1.0e-5
45◦ 5.6e-6 2.2e-10 2.6e-2 1.0e-6 9.0e-6
60◦ 3.8e-6 2.5e-10 1.9e-2 1.2e-6 2.9e-5

Table 5 Solution error for the NFV and the NWC methods,
and the flux error for the NWC method. 3D anisotropic case
with 10 layers for the slanted well, K = diag(10, 100, 1).

Fig. 8 shows two cross-sections of the analytical so-

lution for this case. Errors for the NFV and the NWC
methods are presented in Fig. 9 and in Table 5. By
analogy with the anisotropic case from section 5.2 we

calculate εNFV
2p,anl and εNWC

2p to show the real magnitude
of the error compared to the solution variation.

One can see that the solution error for the method

without nonlinear correction is noticeable compared to
the solution variation (see εNFV

2p,anl) while the NWCmethod
produces almost zero error. The numerical flux error

εNWC
q is also small for the considered anisotropy ratio.

5.4 3D isotropic case, partially perforated well

The partially perforated well case repeats the previous

test case layout with the reservoir dimensions 100 ×
100× 12.5. The well perforation is a vertical finite seg-
ment [A,B], where A = (50, 50, 1.95) and B = (50, 50,

10.55). The permeability tensor is scalar, K = I. For
the analytical solution we use (25).

Fig. 10 Analytical solution (top) for the partially perforated
well and solution error for the NFV (middle) and the NWC
(bottom) methods.

Fig. 10 (top) presents the vertical cross-section of

the grid with the analytical solution for the partially
perforated well case. Errors for the NFV and the NWC
methods are shown in Fig. 10 (middle and bottom).

Both schemes use the analytical flux to the well cells
proportional to the perforation size inside a cell. Ta-
ble 6 contains solution errors for two methods.

N εNFV
p,anl εNWC

p,anl

33 1.0e-3 5.5e-10
67 4.4e-4 3.3e-8
99 2.6e-4 4.6e-9

Table 6 Solution error for the NFV and the NWC methods
for the partially perforated well case. Both schemes use the
analytical flux to the well cells.

5.5 2D isotropic case, two wells

The last experiment deals with two wells in the box do-
main. Domain dimensions are [−100; 100]× [−50; 50]×
[0; d]. We consider the domain as pseudo-2D and ne-

glect z coordinate in further description. The domain
contains two vertical perfect wells located at (−50, 0)
and (50, 0). The well rates are q1 = 1, q2 = 4. The

permeability tensor is scalar, K = I.
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The analytical solution for this problem is suggested

in [8]:

p =
q1 ln r1
2πkhw

+
q2 ln r2
2πkhw

+ C,

where hw is the well height (hw = d = 3 in our case),

and C is some constant.

Fig. 11 Analytical solution for two wells problem.

In order to fix a unique solution, we set the pressure
in the middle point x0 = (0, 0), P0 = p(x0) = 1.5. The
analytical solution then becomes (see Fig. 11):

p = P0 −
q1 ln (r1/rw,p1)

2πkhw
+

q2 ln (r2/rw,p2)

2πkhw
,

where r1, r2 are the distances from the current point
to the wells 1 and 2, respectively, and rw,p1, rw,p2 are
the distances from the middle point x0 to the wells.

Pressures on the wells are obtained from this formula.
The radii of the near-well regions used in the loga-

rithmic correction for both wells are R1 = R2 = 30.

For the two wells case we use the simplest cubic grids
that are the best meshes for the Peaceman method.
Grid dimensions are 66 × 33 × 1, 134 × 67 × 1 and

198× 99× 1.

100/h εNFV
p,anl εNWC

p,anl εNFV
p,pcm εNWC

p

33 1.2e-2 2.8e-5 1.2e-2 2.8e-5
67 5.1e-3 7.0e-6 5.2e-3 7.6e-6
99 3.1e-3 3.2e-6 3.1e-3 4.1e-6

100/h εNFV
q1

εNFV
q2

εNWC
q1

εNWC
q2

33 4.6e-3 1.9e-2 2.1e-5 4.1e-5
67 4.6e-3 1.9e-2 2.3e-5 5.4e-5
99 4.6e-3 1.8e-2 2.0e-5 7.0e-5

Table 7 Solution relative errors and flux errors for q1 and
q2 for the problem with two wells for cubic grids.

Table 7 shows the relative errors for the NFV and
the NWC methods for the analytical well rates, relative
errors for the pressure and the well rates (the first and

the second well) for the numerical well models: NFV +
Peaceman and the NWC method.

Figure 12 presents the error fields for the NFV scheme

with the Peaceman well model and the NWC method

Fig. 12 Relative errors for the NFV scheme with Peaceman
well model (top) and the NWC (bottom) methods in the log-
scale. Cubic grid 134× 67× 1.

in the log-scale. Note that the NFV scheme reduces
to the standard FV scheme with the linear two-point

flux approximation on cubic mesh and isotropic media.
The largest error of the NFV scheme is concentrated in
regions around the wells that are covered by the near-

well regions of the NWC method. The NWC method
gives considerably smaller errors than the conventional
method.

6 Discussions and conclusions

We presented the new near-well correction (NWC) method
for the general case of anisotropic media, polyhedral

grids and arbitrarily oriented wells including slanted,
shifted and partially perforated cases.

Numerical experiments show the noticeable improve-

ment of accuracy compared to the original monotone
nonlinear FV scheme with the conventional Peaceman
well model or with the given analytical well rate. Prac-

tical implication of the improved accuracy is more accu-
rate calculation of the well rates even on coarse grids.

We used the linear version of the method and achieved
better accuracy compared to the nonlinear scheme by

the cost of waiving the solution monotonicity in the
near-well region. Choosing the nonlinear weights in (10)
may help to retrieve additional properties of the solu-

tion such as monotonicity or preserving the DMP, which
is the subject of future study.

The local grid refinement, which is widely used for

modelling areas with high pressure gradients, is not re-
quired in our approximation, since the NWC method
provides enhanced accuracy for arbitrary well cells.

The study presented in this paper covers a single-

phase flow, however the approach can also be extended
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to the multiphase flows model. The construction of the

method also allows us to consider more complex struc-
tures (e.g. wells with hydraulic fractures), as soon as
we can compute local solution (analytical or numerical)

for the flow generated by this structure.
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