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 Over the recent decades, the fight against oncolog�
ical diseases in developed countries has become one of
the key factors in the development of medicine and
medical and biological research. One of the promising
directions of treatment is considered to be antitumor
antiangiogenic therapy (AAT). In 1966 J. Folkman
et al. demonstrated that the preexisting blood–vascu�
lar system provides the growth of a tumor xenograft in
an isolated organ up to a radius of 3–4 mm [1], while
further growth requires neovascularization, i.e., for�
mation of new blood vessels from the preexisting vas�
cular network. The antiangiogenic therapy suggested
by Folkman in 1971 [2] is aimed at limitation of the
influx of nutrients into a tumor by blocking tumor
angiogenesis.

At present, a great number of different factors that
both stimulate and inhibit tumor neovascularization
are known [3]. Nevertheless, the most universal medi�
ator of angiogenesis is considered to be the vascular
endothelial growth factor (VEGF). This molecule,
which weighs 34–42 kDa depending on its isoform,
interacts with the receptors on the membrane of an
endothelial cell converting it to its active state. The
activated cell can differentiate in two directions,
obtaining either a migration or proliferation pheno�
type. Cells with a migration phenotype, which consti�
tute the tip of a capillary that is being formed, choose

 Abbreviations used: AAT, antitumor antiangiogenic therapy;
VEGF, vascular endothelial growth factor.

the direction of its growth via filopodia. It is believed
that the growth occurs predominantly along a gradient
of oxygen decrease. At the same time, cells with a pro�
liferation phenotype, which are located in a capillary
trunk, are responsible for its elongation.

Neovascularization takes place not only during
tumor growth, but also upon wound healing, postsur�
gical recovery of tissues, and pregnancy. However, a
significant difference of the capillary network that
forms during tumor angiogenesis from the one that
preexists in a tissue or those that form as a result of
other types of neovascularization is its inefficiency [4].
The vascular network that forms as a result of tumor
angiogenesis has an irregular structure with a great
number of blind capillaries; the newly formed capillar�
ies themselves have a greater diameter, numerous large
pores in their walls, and decreased blood content,
when compared to the preexisting capillaries. More�
over, during their growth, tumor cells produce differ�
ent enzymes, in particular, EphB4, which disturb
angiogenesis regulation, which leads to degradation of
most capillaries within the tumor and thickening of
the walls of the remaining ones, thus preventing the
penetration of nutrients into the tissue [5].

All these issues lead to natural questions: how does
tumor angiogenesis accelerate the growth of the tumor
and how does it depend on its type and/or localiza�
tion? This question is fundamental for the evaluation
of the potential effectiveness of AAT for a certain
patient. In clinical practice, it is possible only to
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observe the results of using AAT [6–8]. The prediction
of its antitumor effectiveness beforehand using math�
ematical simulation could be attempted.

The main difficulty in the simulation of tumor
growth considering angiogenesis is the problem of tak�
ing processes with different scales into account. In
fact, the capillary diameter is 5–10 μm; the distance
between capillaries is 100–200 μm; the average length
of the capillary is 0.5–1.0 mm; and the tumor size can
reach tens of centimeters, i.e., the scale difference is
four orders of magnitude. To simulate the growth of
individual capillaries and interactions of cells with
each other and the environment, cellular automaton
models are mainly used [9, 10]. However, models of
this type require extremely long computations, even
when calculating regions with sizes of approximately
1 cm. It should be noted that in the first works on
angiogenesis simulation tumor growth was not taken
into account and the tumor was considered as a sta�
tionary source of VEGF [11, 12]. To simulate tumor
growth, continuous models are more suitable with the
tumor and its surroundings being described by cell
densities and concentrations of substances [13–17].
Here, it is a great challenge to correctly describe the
transport of nutrients in the capillary network; owing
to this, the problem of the correct relationship in the
model between micro� and macroprocesses is urgent
[18].

It should be admitted that continuous models in
the literature contain a great number of parameters,
many of which almost can not be determined experi�
mentally, which decreases their forecasting power for
the evaluation of the antitumor effectiveness of anti�
angiogenic therapy. In these studies, the results of sim�
ulation are only qualitatively compared with the data
of magnetic resonance tomography and histological

studies of clinical patients. Although this comparison
demonstrates the qualitative agreement of the spatial
structure of a real tumor and the results of a simula�
tion, the practical value of this approach is doubtful.

We have developed a continuous mathematical
model of the growth of an invasive tumor that takes
angiogenesis into account [19]. This model considers
the densities of tumor cells of different types, the con�
centrations of nutrients and VEGF, and the density of
the vascular network in the tissue. Using this
approach, the main problem is accounting for the
change in the influx of nutrients due to remodeling of
the vascular network. Solving this problem depends on
the choice of the nutrient in the model. The influx of
oxygen, whose content significantly differs in arterial
and venous blood, depends on the volume of the blood
that runs through the tissue. Due to this, upon choos�
ing oxygen as a key metabolite, the relationship
between the influx and density of the vascular network
is not obvious and requires a distinct study. In the case
where glucose is chosen as the key metabolite, the pic�
ture is simpler. Since the glucose concentrations in
arterial and venous blood differ little (even in brain
vessels this difference is about 12%), the influx to the
tissue is proportional to the surface area of the tissue
capillaries. In this case, the density of the vascular net�
work is linearly connected with the influx of the nutri�
ent, which we used during the simulation. The devel�
opment of experimental methods of this study makes
it possible to perform a detailed angiography of a cap�
illary network and to obtain data on its density, includ�
ing its surface density in different tumor regions [20].

The results of our simulation [19] revealed that
angiogenesis does not affect the growth of an invasive
tumor; thus, AAT is not effective against the tumor.
However, in the model we took only the random
motility of tumor cells into account and ignored con�
vective fluxes that occur upon tumor growth in a com�
pact dense tissue. As demonstrated in [21], it is these
fluxes that determine the growth rate of a low�invasive
tumor. Thus, in this study a model of tumor growth
that takes angiogenesis into account has been consid�
ered, which factors in both the intrinsic motility of the
malignant cells and convection in the tissue. From the
practical point of view, this simulation will make it
possible to evaluate the potential antitumor effective�
ness of AAT both for high� and low invasive tumors.

MODEL

The interaction of the variables in a model of tumor
growth with angiogenesis is given in Fig. 1.

This model considers a tumor as a cell colony that
is surrounded by normal tissue with a preexisting vas�
cular network. Living tumor cells can be in two states:
a proliferating one with the density n1(r, t) and a
migrating one with the density n2(r, t), where r is the
spatial coordinate and t is the time. The intensity of the

Migration

n1 n2 m

Gl VEGF

EC

Fig. 1. A block diagram of the model. n1, n2, and m, prolif�
erating, migrating, and dead cells of a tumor, respectively;
Gl, glucose; VEGF, vascular endothelial growth factor;
EC, density of the vascular network. The white arrows
show activating connections; the dark arrows show inhib�
iting connections.
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transition from one state to another one P1(S), P2(S)
depends on the concentration of the nutrient S(r, t).
At its high concentration, the cells divide at the con�
stant rate B and do not diffuse. When the metabolite
concentration significantly decreases, the cells stop
dividing and begin to migrate randomly with the coef�
ficient Dn searching for regions with a high level of the
nutrient. If the migrating cells do not reach a region
with a high concentration of the nutrient, they die at
the rate dn. The density of the dead cells is m(r, t). We
have already used this approach in a previous work on
the simulation of the growth of an invasive tumor [21].
It is based on the principle of migration�proliferation
dichotomy of tumor cells that is observed experimen�
tally [23]. Along with tumor cells, the model considers
the normal cells of the organism, h(r, t). It is believed
that they do not divide and do not possess intrinsic
motility. Under the effects of factors released by active
tumor cells, they die at the rate H(n1 + n2), where H is
the lysis parameter. We consider a compact dense tis�
sue so that h(r, t) + nt(r, t) = const, where nt(r, t) is the
total density of the tumor cells, including the dead
cells nt(r, t) = n1(r, t) + n2(r, t) + m(r, t). We assume
that the volumes of all the cells are identical. Taking
convection into account, with I(r) being the rate of the
convective flux, the equations for all the cells in the
model in a one�dimensional case are as follows

(1)

Since the total density of the normal and tumor
cells is constant, then taking it as unity we exclude the
equation for the normal cells from the system and
obtain the expression for the potential component of
the velocity of the convective flux U(x) =

 The derivation of this

equation was described in [24]. Here, we assume that
stresses that occur in the tissue are transmitted simul�
taneously; this is justified by the fact that their relax�
ation time is small compared with the time of cell divi�
sion.

∂n1

∂t
������ Bn1 P1 S( )n1 P2 S( )n2

∂ I x( )n1( )
∂x

�������������������,–+–=

∂n2

∂t
������ Dn

∂2n2

∂x2
�������� P1 S( )n1 P2 S( )n2–+=

– dnn2
∂ I x( )n2( )

∂x
�������������������– ,

∂m
∂t

������ dnn2
∂ I x( )m( )

∂x
�������������������,–=

∂h
∂t
����� H n1 n2+( )h– ∂ I x( )h( )

∂x
�����������������.–=

Bn1 H n1 n2+( ) 1 n1–( )–[ ] r.d
0

x

∫

Then, the system of equations for the cell densities
could be written as

(2)

The form of the functions P1(S) and P2(S) is of
importance. The intensity of the transition from pro�
liferation to migration P1(S) was taken from [25],
where it was successfully used for fitting experimental
data. The parameter k1 describes the maximal inten�
sity of the transition, and k2 characterizes the sensitiv�
ity to a shortage of the nutrient. Unfortunately, there
are no experimentally proven data on the form of the
function P2(S). Therefore, we used a smooth function
that is close to a step one, where Scrit is the concentra�
tion of the nutrient exceeding which causes the cell to
stop migrating and begin dividing, 2k3 is the maximal
intensity of the transition from migration to prolifera�
tion, and ε describes the difference of the function
P2(S) from the step one: P2(S) = 2k3Θ(S – Scrit) at
ε → 0. We have used this form of the transition func�
tion already for the simulation of the growth of an
invasive tumor considering migration�proliferation
dichotomy of its cells [22].

The nutrient is delivered by the vascular network,
diffuses throughout tissue, and is consumed by both
malignant cells (the proliferating cells consume it in
significantly larger amounts than the migrating ones
do) and normal cells.

The model considers the averaged characteristic of
the vascular network in the tissue, namely, its density.
The reasons for this were discussed in detail in the
Introduction. We believe that initially in the tissue a
capillary network that is sufficient for vital functions of
the tissue exists; its density is taken as unity. Here, the
vascular system can become denser as a result of
angiogenesis depending on the concentration of vas�
cular endothelial growth factor (VEGF), which is
V(r, t). The capillaries inside the tumor are destroyed.

∂n1

∂t
������ Bn1 P1 S( )n1– P2 S( )n2

∂ I x( )n1( )
∂x

�������������������,–+=

∂n2

∂t
������ Dn

∂2n2

∂x2
�������� P1 S( )n1 P2 S( )n2–+=

– dnn2
∂ I x( )n2( )

∂x
�������������������,–

∂m
∂t

������ dnn2
∂ I x( )m( )

∂x
�������������������,–=

I x( ) Dn
∂n2

∂x
������ U x( )+ Dn

∂n2

∂x
������= =

+ Bn1 H n1 n2+( ) 1 nt–( )–[ ] r,d

0

x

∫

P1 S( ) k1 k2S–( ),exp=

P2 S( ) k3 1 Scrit S–( )ε[ ]tanh–( ).=



452

BIOPHYSICS  Vol. 60  No. 3  2015

KOLOBOV and KUZNETSOV

The VEGF distribution in the tissue is determined by
the balance of its production by the tumor cells, diffu�
sion, nonspecific degradation, and utilization by the
endothelial cells that constitute the vascular system.
Thus, the equations for the nutrient concentration,
the density of the vascular network in the tissue, and
the concentration of the proangiogenic factor are the
following

(3)

where Ds is the diffusion constant of the substrate, qt is
the rate of consumption of the substrate by the tumor,
K is a parameter that determines the difference in the
intensity of the consumption of the nutrient by the
migrating and dividing cells, S* limits the cell con�
sumption of the nutrient at its low concentrations, qh

is the coefficient of consumption of the substrate by
the normal tissue, and Q0 is a parameter that deter�
mines its influx from the vessels, the density of which
in the tissue is specified by the variable EC(r, t). It is
chosen so that in the absence of a tumor in a tissue
with the preexisting vascular system EC0 = 1 the con�
stant level of the nutrient S(r, t) = 1 is maintained. R is
the maximal rate of vessel growth; l is the rate of deg�
radation of the vascular network inside the tumor; DV

is the diffusion constant of VEGF; p is the rate of
VEGF production by the migrating tumor cells; f is the
ratio of the rates of its production by different types of
malignant cells; dV is the rate of VEGF nonspecific
degradation; and ω is the rate of its utilization by the
endothelial cells of the vascular network during angio�
genesis. It should be emphasized that the model uses
only non�negative parameters.

The system of equations (2), (3) makes it possible
to simulate both the tumor growth depending on the
influx of nutrients through the vascular network into
the tissue and the change in this network induced by
the tumor growth.

RESULTS

It is well known that at the initial stage of growth a
tumor is spherical. With an increase in its radius up to
several millimeters, a necrotic region is formed in the
center of the tumor, with living cells being absent.
Since differences in the Laplace operator in the spher�
ically symmetrical and planar cases are significant
only for small radii, then the use of planar geometry
for simulating tumors with a central necrotic region
does not lead to any significant distortion of the result.
Thus, system of equations (2), (3) was solved in a one�
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dimensional plane region with the size L = 2 (cm) on
the assumption that at the left boundary there is the
center of the tumor, which grows to the right towards
the normal tissue with the preexisting vascular net�
work. Thus, the boundary conditions will be the fol�
lowing:

(4)

The model contains a great number of parameters,
with the values being taken predominantly from the
literature data. Lewis lung carcinoma was chosen as
the basic tumor type. This is a well�known tumor that
has high metastatic potential and thus is highly inva�
sive. In [25], the main kinetic parameters of this tumor
cell type are given. The critical metabolite in this study
was represented by glucose rather than oxygen. Thus,
we also chose glucose as a nutrient in the model. This
is acceptable for a qualitative study, since the regions of
hypoxia and hypoglycemia (shortages of oxygen and
glucose, respectively) almost coincide in a tumor [26].
Moreover, in [25] the rate of VEGF production by
tumor cells under metabolic stress was assessed. The
greatest problems were connected with determination
of the values of the equation parameters for the density
of the vascular network (2), since this equation
describes several averaged characteristics. The primary
estimate of the maximal growth rate of the vascular
network density, R, was taken from [27]. The other
parameters of the model were chosen from a physio�
logically reasonable range so as to reproduce the
known structure of a tumor in the tissue. The parame�
ter of the lysis of the normal cells was assessed accord�
ing to the consideration that their death rate should be
much less than the rate of degradation of the vascular
network within the tumor, since in reality cell death is
connected with the release of the substances that con�
stitute it and in our model the cell simply disappears,
emptying the space for tumor cells. The other param�
eters that determine the VEGF dynamics in the tissue
were taken from the study of Milde et al. [28].

For the convenience of calculations, all the param�
eters were made nondimensional. The normalization
values were chosen as the following: for the time—t0 =
1 h, for the length—L0 = 10–2 cm, for the cell den�
sity— nmax = 108 cells/mL, for the glucose concentra�
tion—S0 = 1 mg/mL, and for the VEGF concentra�
tion—V0 = 10–13 mol/mL. As mentioned, the normal
vascular density in the tissue was taken as unity—
EC0 = 1. After making the parameters nondimen�
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sional, the following set of parameters was chosen as
basic:

Using this set of parameters, computational inves�
tigation of the model was performed for two values of
the diffusion of the malignant cells, Di = 0.36 and
Dc = 0.0036. The first coefficient in dimensional units
is Di = 10–8 cm2/s; this is a large value, which is usually
assigned to metastatic high invasive tumor types, for
example, gliomas [15]. These tumors grow mainly due
to intrinsic cell motility and the effect of convection is
small. The other value of the diffusion constant of Dc =
10–12 cm2/s corresponds to low�invasive tumors. This
tumor is much denser and convection is of great
importance for its growth.

At the initial moment of time t = 0, it was
assumed in the entire region that S(x, 0) = 1, EC(x, 0) = 1,
V(x, 0) = 0, n2(x, 0) = m(x, 0) = 0, and a small
population of proliferating tumor cells is near the left
boundary of the region n1(x, 0) = 0.5 – 0.02x2 at x ≤ 5
and n1(x, 0) = 0 at x > 5.

For a numerical solution of the system (2), (3), the
method of splitting with respect to physical processes
was used. The convection equations were solved via
the Lax–Wendroff method; the kinetic equations were
solved by the Runge–Kutta method and the Crank–

L 200, B 0.047, dn 0.01,= = =

DS 108, qt 5.1, K 0.025,= = =

S* 0.02, qn 0.1275, Q0 0.125,= = =

DV 21.6, p 20, f 0,= = =

dV 0.1, ω 1, R 0.0075,= = =

V* 0.1, ECmax 3, l 1,= = =

H 0.01, k1 0.4, k2 19.8,= = =

k3 0.12, Scrit 0.3, ε 10.= = =

Nicolson method was used to solve the diffusion equa�
tions.

The results of the model calculations for the stan�
dard set of parameters at the different diffusions are
given in Figs. 2–5. As can be seen from these plots, the
results of the simulation reproduce the tumor struc�
ture correctly, with a layer of active cells at the bound�
ary and a necrotic region in the center of the tumor.
Here, at the boundary of the tumor and normal tissue
an increased density of the vascular network is
observed, while there are almost no vessels inside the
tumor.

As can be seen from Figs. 2 and 3, the low�invasive
tumor is denser compared to the invasive one, which
was mentioned earlier. For a difference in the diffusion
constants by two orders of magnitude, the radius of the
invasive tumor increases almost five times faster.

The difference between high and low�invasive
tumors is also manifested in the shape of their front
boundaries, with that of the high�grade invasive tumor
being fuzzier.

Figures 4 and 5 clearly demonstrate that in the low
invasive tumor angiogenesis is more intense, with the
vascular network at the tumor boundary becoming
denser by a factor of more than 2.5, whereas in the
high�invasive tumor this increase is insignificant. The
difference in the intensity of the angiogenesis is also
indicated by VEGF, the peak value of which for the
low�invasive tumor is higher by a factor of 15–20.

A key question that should be answered by our
study is how strongly angiogenesis affects the tumor
growth rate at different motilities of its cells. For this,
we varied two parameters in the equation for the den�
sity of the vascular network (3), R and l. It should be
emphasized that both parameters were varied within a

0.4
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200 5 10 15

n1 + n2, 108 cells/cm3

x, mm

day 40day 25day11 

nt, 108 cells/cm3

Fig. 2. The spatial distribution of the total density nt = n1 +
n2 + m (solid line) and the density of living cells n1 + n2
(dashed line) of an invasive tumor on the 11th, 25th, and
46th days of the growth for the standard set of parameters.
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0.4

200 5 10 15

n1 + n2, 108 cells/cm3
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day 207day 120day 57
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0.6

Fig. 3. The spatial distribution of the total density nt = n1 +
n2 + m (solid line) and the density of living cells n1 + n2
(dashed line) of a noninvasive tumor on the 57th, 120th,
and 207th days of the growth for a standard set of parame�
ters.
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very wide range, R ∈ [0.0015, 0.015] and l ∈ [0.05, 10].
Here, the maximal value R = 0.015 corresponds to
doubling of the density of the vascular network in
4 days (at high VEGF concentration), which is near
the limit of the physiologically possible values for the
angiogenesis rate. A zero value of the rate of degrada�
tion of the vascular network by the tumor l = 0 is not
acceptable, since in this case there are sources of
nutrients and, thus, active cells inside the necrotic
region of the tumor, which is not observed in experi�
ments. Histological data indicate that even if there is a
vessel inside a tumor, the high thickness of its walls
prevents an influx of nutrients from the blood into the
tissue. Figure 6 gives the time dependence of the radius

of the invasive tumor for the different values R and l.
The radius was chosen as the maximal value of x, for
which n1(x, t) + n2(x, t) > 0.001. As can be seen from
the plots, the growth rate of the invasive tumor does
not depend on the parameters that determine the rate
of remodeling of the vascular network; in the case of a
noninvasive tumor this dependence exists (Fig. 7).

CONCLUSIONS

In this study a continual multicomponent model of
the growth of a vascularized tumor was created, which
considered not only the intrinsic motility of malignant
cells, but also the convective fluxes that occur during
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Fig. 4. The spatial distribution of glucose (Gl) (solid line),
VEGF concentrations (large dashed line), and the density
of the vascular network in the tissue EC (small dashed line)
on the 11th (a), 25th (b), and 46th (c) days of the growth of
an invasive tumor for a standard set of parameters.
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the vascular network in the tissue EC (small dashed line) on
the 57th (a), 120th (b), and 207th (c) days of the growth of
a non�invasive tumor for the standard set of parameters.
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tumor growth in a compact dense tissue. It was
assumed in the model that the invasive tumors are
characterized by high cell motility, whereas the low�
invasive tumors grow predominantly due to the con�
vective fluxes in the tissue. The results of the simula�
tion revealed that in the case of the low�invasive tumor
angiogenesis significantly increases the rate of the
tumor’s growth. This is not surprising, since the con�
vection at the tumor boundary that determines the rate
of its growth depends on the total proliferation of its
cells inside, which grows up with an increase in the
influx of nutrients during angiogenesis. Thus, it could
be concluded that in the case of a low�invasive tumor
angiogenic therapy could have a significant antitumor
effect; however, even in the absence of angiogenesis,
when the density of the vascular network almost does
not increase, the tumor growth does not stop com�
pletely. We previously demonstrated that angiogenesis
does not affect the growth rate of a tumor that grows
only due to the cell migration [19]. However, taking
convection into account could have influenced this

result if the rates of the convective and diffusive growth
added together. Nevertheless, high activity of pro�
teolytic enzymes near the tumor, which is observed in
experiments and is taken into account in our model,
induces the death of normal cells behind the growth
front of the high�invasive tumor. This leads to a
decrease in the convective flux at its boundary. More�
over, the convection rate at the front of an invasive
tumor may be directed toward the tumor center, which
would lead to the slowing of its increase. Thus, taking
tissue convection into account does not change the
key result: the growth rate of an invasive tumor almost
does not depend on angiogenesis and, thus, AAT
would not have an antitumor effect.

At present, a sufficient amount of experimental
data on the clinical application of antitumor angio�
genic therapy that employs bevacizumab (monoclonal
antibody to VEGF) has been accumulated [7, 29, 30].
These data are ambiguous, since for some tumors AAT
appears to be effective and for others it does not. The
present study at least gives one of the possible explana�
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tions of such results and agrees with the clinical data.
Unfortunately, in most cases the clinical classification
of malignant tumors does not make it possible to
unequivocally determine which of the transport pro�
cesses in the tissue, cell motility or convection fluxes,
defines the tumor growth. In our opinion this is the
reason that the clinical data on the effectiveness of
AAT seem ambiguous in most cases [30]. However, if
the clinical type of the tumor makes it possible to
determine the character of its growth sufficiently
clearly, then our conclusions are supported by the
experimental data. Indeed, metastatically active pan�
creatic cancer cells have high motility; thus, according
to our model AAT would be ineffective in their case,
which is observed in clinics [29]. In the case of non�
small cell lung carcinoma, it is reasonable to suggest
that tissue convection plays a more important role
than the cell motility; thus, AAT would be effective,
which is also shown by the clinical data [7].
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