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Abstract. The optimization of linear solver parameters in unsteady
multiphase groundflow modelling is considered. Two strategies of
dynamic parameters setting for the linear solver are proposed when the
linear systems properties are modified during simulation in the INMOST
framework. It is shown that the considered algorithms for dynamic selec-
tion of linear solver parameters provide a more efficient solution than any
prescribed set of parameters. The results of numerical experiments on the
INM RAS cluster are presented.
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1 Introduction

The problem of software performance tuning is of great importance for efficient
usage of the modern supercomputer facilities. It is very important for numerical
modelling applications exploiting such a software.

One of the most famous examples of automatic software tuning is the ATLAS
package [1] which carry out the performance optimization for several BLAS
functions during the installation of the package.

Another important and very popular idea of software performance tuning
is the usage of data mining techniques. For example, Self-Adapting Numerical
Software (SANS) [2] and Self-Adapting Large-scale Solver Architecture (SALSA)
[3] perform the analysis of the input data to select the linear solver from the set
of available ones. The machine learning techniques is used for the same goal as
well [4].

The genetic algorithms are used in [5] in a software system called Intelli-
gent Performance Assistant (IPA) to improve the performance of ExxonMobil’s
proprietary reservoir simulator, EMpowerTM.
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In the present paper we would like to return ‘back to basics’ of linear algebra
and to knowledge on the mathematical properties of the preconditioned itera-
tive algorithms considered. For this reason we consider the solution of unsteady
problems that comes from multiphase black-oil reservoir simulation. The main
difficulty of selecting the optimal parameters of the linear solvers at each sim-
ulation time step is the modification of the stiffness matrix properties. If the
linear solver is already selected prior to the unsteady problem solution, then one
has at least a possibility to select the input set of linear solver parameters. The
main idea is to construct the procedure of automatic and dynamic selection of
parameters that are close to the optimal ones, i.e. provide the minimum of the
solution time. In the present paper we propose two different algorithms for this
approach.

For our numerical experiments on dynamic parameters tuning we have
exploited an INMOST software platform [6]. Besides the ability to operate with
the distributed meshes of general form, this platform includes a convenient inter-
face for solving large sparse linear systems. It allows user to forget about specific
implementations of each particular linear solver and to focus only on parame-
ters optimizations. INMOST provides a large variety of different linear solvers,
some of them are implemented inside the platform, the others can be enabled as
external libraries, such as PETSc [7] or Trilinos [8].

We consider the INMOST linear solver BIILU2 for our numerical experi-
ments. This solver is the combination of the second order incomplete triangular
factorization ILU2(τ) and the incomplete inverse LU factorization BIILU(q) (as
a replacement of additive Schwarz preconditioning AS(q)) [9,10]. Here, τ is the
factorization threshold and q is the number of overlap levels for blocks corre-
sponding to each processor. The use of ILU2(τ) factorization is chosen due to it’s
robust and efficient preconditioning in comparison with the conventional struc-
tural incomplete factorization ILU(k) or the conventional incomplete threshold
factorization ILU(τ).

As an example of simulation we use the multi-phase flow model based on the
fully implicit time discretization and the nonlinear monotone two-point approx-
imation for the Darcy fluxes in Jacobian matrix [11].

2 Algorithm’s Description

2.1 The Choice of Appropriate Optimization Algorithm

The function to be optimized can be defined as

Tk = G(Ak, bk, p, ε) ≡ F (Ak, bk, p) ± ε, (1)

where Ak is the linear system matrix on kth time step, bk is the right-hand side
vector on kth time step, p is the parameter (or parameters) of some liner solver
to be optimized, Tk is the return value of function which is equal to the time
needed for solving the linear system Akx = bk.
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A lot of difficulties associated with the real unsteady processes should be
taken into account while choosing algorithms for parameter optimization of linear
solvers:

1. Function G can behave differently from run to run, as we solve the problem in
parallel mode using the MPI library. The time of messages delivery between
processors is nondeterministic, so the function value may vary on some small
but essential unknown value ε which is impossible to predict. Therefore the
target function may have several local minima and maxima.

2. During unsteady process both Ak and bk will be modified with each time step
and as a result optimal parameters p will be changed as well. The optimization
algorithm should be able to find these parameters (or close to it) regardless
their modification in time.

3. The value of function G can be calculated only once for given Ak, bk and for
the selected parameters p. There is no reason to solve linear system Akx = bk

again even with more optimal parameters.
4. As Ak may vary with the simulation time, the minimum value of function

F may increase. This is why it is really hard to use the previous values of
F (Ak, bk, p).

5. The algorithm should not be computationally expensive and time spent on
the parameters optimization should not affect the total time of solving the
unsteady problem.

To deal with the above difficulties we should also use a number of assumptions
on the function F :

1. For given Ak and bk the function is continuous by parameters p and has the
form close to a paraboloid, and since F > 0 the global minima exists and
finite.

2. In a real simulation matrices Ak may differ, however they have about the
same structure and properties, and as a result we expect that the optimal
parameters based on the kth time step are moved in its small neighborhood
and within this area the values of the Tk are roughly equal.

3. We also assume that at some time step k′ the minimal solution time Tk is
not increasing and depends only on parameters p.

Based on the above issues and assumptions we have proposed to use two
optimization algorithms.

2.2 Very Fast Simulated Re-annealing

Annealing (simulated annealing, SA) is a probabilistic technique for approxi-
mating the global optimum of a given function. At each step, the SA heuristic
considers some neighbouring state s′ of the current state s, and probabilistically
decides between moving the system to state s′ or staying in state s. These prob-
abilities ultimately lead the system to move to states of lower energy. Typically
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this step is repeated until the system reaches a state that is good enough for the
application, or until a given computation budget has been exhausted.

The probability of making the transition from the current state s to a can-
didate new state s′ is specified by an acceptance probability function h(e, e′, T ),
that depends on the energies e = E(s) and e′ = E(s′) of the two states, and on
a global time-varying parameter T called the temperature. States with a smaller
energy are better than those with a greater energy. The probability function
P must be positive even when e′ is greater than e. This feature prevents the
method from becoming stuck at a local minimum that is worse than the global
one.

When T tends to zero, the probability h(e, e′, T ) must tend to zero if e′ > e
and to a positive value otherwise. For sufficiently small values of T , the system
will then increasingly favor moves that go “downhill” (i.e., to lower energy val-
ues), and avoid those that go “uphill”. With T = 0 the procedure reduces to the
greedy algorithm, which makes only the downhill transitions [12].

The method of simulated annealing consists of three functional relationships:

g – probability density of state-space of D parameters x = {xi, i = 1,D};
h – probability density for acceptance of new cost-function given the just

previous value;
T (k) – schedule of annealing temperature T in annealing time steps k, i.e. of

changing volatility or fluctuations of the two previous probability densities.

The acceptance probability is based on the chances of obtaining a new state
s′ relative to a previous state s,

h =
exp(−e′/T )

exp(−e′/T ) + exp(−e/T )
≈ 1

1 + exp(ΔE/T )
, (2)

where ΔE represents the energy difference between the present and previous
values of the cost-function appropriate to the physical problem, i.e. ΔE = e′ − e
(see [13]).

The algorithm itself can be described by the following steps:

1. Select a random state s. The energy values of the system is set to E(s).
2. On kth step:

(a) Compare the energy of the system E(s) in the state s with the global
minimum. If it is smaller then change the global minimum value.

(b) Generate a new state s′ and calculate E(s′).
(c) Generate a random number α uniformly distributed over [0, 1]. If α <

h(ΔE,T (k)) then set s′ as the current state and go to the next iteration
k + 1. Otherwise repeat the previous step until a suitable state s′ will be
found.

In the present paper we are using the “very fast annealing scheme” produced
by Ingber [13]. In this scheme different parameters may have different finite
ranges, fixed by physical considerations, and different annealing-time-dependent
sensitivities, measured by the curvature of the cost-function at local minima.
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Consider parameters xi
k in ith dimension generated by an annealing step k

with the following range
xi

k ∈ [Ai, Bi] (3)

calculated with the random variable ξi:

xi
k+1 = xi

k + ξi(Bi − Ai), ξi ∈ [−1, 1]. (4)

The above formula can be applied several times until xi
k+1 ∈ [Ai, Bi].

Generating function defined as

gT (ξ) =
n∏

i=1

1
2(|ξi| + Ti) ln(1 + 1/Ti)

≡
n∏

i=1

g(i;T )(ξi), ξi ∈ [−1, 1],

ξi = sgn
(

αi − 1
2

)
Ti((1 + 1/Ti)|2αi−1| − 1), (5)

where αi are random numbers, uniformly distributed over segment [0, 1].
Annealing schedule will be defined as

Ti(k) = T(i;0) exp(−cik
1/D), ci > 0. (6)

It is proven [13], that the very fast annealing algorithm are one of the most
effective method of random search of optimal solutions for a wide class of prob-
lems.

2.3 Alternating Parameters Probe Based Tuning

Another idea for constructing the algorithm for dynamic parameters tuning for
unsteady problem is the attempt to stay at a local minimum probing a nearby
area. If the current parameters set is near to the minimum or the minimum is
moving not too fast then the algorithm may track the minimum.

The algorithm (1U) for unsteady problem can be formulated as follows:

Specify initial values for τ , q, and probe direction dir from {δτ+, δq+, δτ−, δq−}
while simulation stopping criterion do

Make time step
Solve linear system
if new minimum found then

Update minimum set (τ, q)
end if
if dir= δτ+ then

ind(τ) + +
else if dir= δq+ then

ind(q) + +
else if dir= δτ− then

ind(τ) − −
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else if dir= δq− then
ind(q) − −

else
Stay with no change of (τ, q)

end if
end while

2.4 Linear Brute-Force Searching

Linear brute-force search is the simplest algorithm, which can find the global
minimum of the given function F (x), where x = (x1, x2, . . . xn) on an arbitrary
grid D.

Linear brute-force search algorithm implies optimizing each variable xi inde-
pendently and was implemented in the following way:

– The set of runs for different values of τ from τmin to τmax for a fixed value of
overlap size parameter q = 3 was performed, and a quasi-optimal value of τ∗

was found.
– The set of runs for different values of q from qmin to qmax for a fixed value

of quasi-optimal τ∗ was performed, and a quasi-optimal pair of parameters
(τ∗, q∗) was found.

This method are very computationally expensive and therefore can’t be rec-
ommended for solving real problems. However it can be used to find the almost
precise global minimum on quite dense grids and enable us to verify the other
parameter tuning approaches.

3 Numerical Experiments

3.1 INM Cluster Configuration

All numerical experiments was performed on INM RAS cluster. The configura-
tion of the cluster computational nodes, used for numerical experiments [14]:

– Compute Node Arbyte Alkazar+ R2Q50;
– 16 cores (two 8-core processors Intel Xeon E5-2665@2.40 GHz);
– 64 Gb RAM;
– SUSE Linux Enterprise Server 11 SP1 (x86 64).

3.2 Dependance on Parameters for a Sample Problem

As a sample linear system we have used the system (called below N14) obtained
from the INM RAS Black-Oil Simulator for Scholars (BOSS) for the well-known
SPE-10 problem [15]. The size of the model mesh is 60 × 220 × 85 cells (1.122 ·
106 cells). The top 35 layers of the model is a Tarbert formation, and is a
representation of a prograding near shore environment, while the bottom 50
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Fig. 1. The porosity and permeability distributions for SPE-10 problem

layers represents Upper Ness which is fluvial. The coefficients of the media are
very contrast. The porosity varies from 1.3 · 10−5 to 0.5 (see Fig. 1, left) and
the permeability varies from 10−3 to 3 · 104 (see Fig. 1, right). The model has
5 vertical wells completed throughout formation. The central well is an injector
and the other 4 wells in the corners are producers.

The dimension of the obtained linear system N14 is 3 896 013 unknowns. The
dependences of solution time T (in seconds) on parameters τ and q is demon-
strated in Fig. 2 for 16 cores and it is quite smooth with the minimum pro-
nounced.

Figure 3 shows the 2D surface of the solution time T in variables τ and q for
the same problem N14 solved on 16 cores. The obtained surface is of paraboloid
type.

(a) T = f(q = 3, τ) (b) T = f(q, τ = 0.003)

Fig. 2. Total solution time T in s. for N14 depending on τ and q for p = 16

3.3 Dynamic Function Simulation

We consider the following two-parameter function for the research purposes:

f(τ, q) =
(

16
25

(lg(τ/τ0))2 + 1
) (

1
25

(
17.5(q − q0)
7.5 + q − q0

)2

+ 1

)
, (7)

τ0 = 0.003, q0 = 3. (8)
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Fig. 3. Total solution time T in s. for N14 in variables τ and q for p = 16

Fig. 4. Two-parameter function (7) and (8)

(a) T = f(q = 3, τ) (b) T = f(q, τ = 0.003)

Fig. 5. Cross-sections for q = qopt = 3 and τ = τopt = 0 : 003

This function can be used as a solution time T measured in seconds instead of
that for real black-oil simulation process and demonstrates more strong depen-
dence on lg(τ) as well as more weak one on overlap parameter q. Figure 4 demon-
strates the respective paraboloid for the above function, which is qualitatively
similar to the paraboloid on Fig. 3. The minimum of this two-parameter function
is in (τ = 0.003, q = 3) in accordance with (8). Figures 5a and b show the cross-
sections for q = qopt = 3 and τ = τopt = 0.003, respectively. With this simple
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(a) Brute-force search and SA algorithm values of τ

(b) Brute-force search and 1U algorithm values of τ

Fig. 6. τopt depending on the time step k for function (7), (9)

function we can easily examine the proposed parameter tuning approaches as
well as provide the complete repeatability of our numerical experiments.

The most interesting is the behavior of proposed algorithms in the unsteady
case. We can modify the above steady state function (7) in the following way:

τ0 = 10−2−cos(2πt/t0), q0 = 2 + cos(2πt/t0), t0 = 100 (9)

where we have the local optimal values lg τ ∈ [−3;−1] and q ∈ [1; 3] for time
moment t ∈ [0; t0].

Figures 6a and b plot τopt depending on the time step for above unsteady-
state function (7), (9). This figures show that proposed algorithms SA and 1U
are able to track the optimal parameters even if they change in time.

3.4 Unsteady Black-Oil Simulation

We consider the two-phase flow model of the INM RAS BOSS simulator for the
real unsteady problem. We simulate 6000 days of the quarter five spot problem
with one injector and one producer wells. The initial water saturation is equal to
residual saturation which results in rather sharp front. The starting time step is
0.0001 days, which increases to 25 days later in the simulation. An incremental
time step leads to an increase in the complexity of linear systems, so does the
water breakthrough which results in higher flow velocities. In our simulation the
water breakthrough occurs at about time 1400 or at about 65th time steps.
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Fig. 7. Unsteady black-oil simulation times with fixed parameters and the dynamic
optimal ones depending on the simulation time step k

Fig. 8. Unsteady black-oil simulation cumulative times with the fixed parameters and
the dynamic optimal ones depending on the simulation time step k

Fig. 9. Optimizing τ for black-oil simulator
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First, in Figs. 7 and 8 we plot solution and cumulative times depending on
the simulation time step for several fixed sets of parameters: (τ = 0.3, q = 2),
(τ = 0.03, q = 3), (τ = 0.003, q = 3), (τ = 0.0003, q = 3) and compare it with
the optimal one, which was found using the linear brute-force search algorithm.
One can see that any fixed set of parameters produce the result which is far from
the optimal solution time.

The same experiment was performed for the two proposed algorithms very
fast simulated re-annealing (SA) and 1U. Figures 9 and 10 present the plots for
the estimated value τopt, local and cumulative solution time T and TΣ , respec-
tively, depending on the simulation time step k. One can observe that the results
of the proposed algorithms are very close to that for the optimal set of parame-
ters. The cumulative solution time for all the proposed algorithms is less than
that for any observed fixed set of parameters (τ, q) (Fig. 11).

Fig. 10. Local and cumulative times depending on the simulation time step k

Fig. 11. Cumulative times bar chart for default sets of parameters and for proposed
algorithms compared with the optimal one
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4 Conclusion

The proposed linear solver parameters tuning algorithms were implemented in
the INMOST framework as an optional toolkit named Trace and Tuning Software
Platform (TTSP). In conclusion of the present paper, we formulate the most
important issues of the progress in this area:

– The influence of the linear solver parameters on the real black-oil simulation
performance was examined;

– The set of optimization algorithms for linear solver parameters tuning were
proposed;

– The TTSP toolkit for parallel linear solver parameters tuning was devel-
oped and verified for the INM RAS black-oil reservoir simulator for scholars
(BOSS);

– It was shown that proposed algorithms essentially increase the performance
of the real unsteady black-oil simulation in comparison with even the best
fixed set of parameters.
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