
Parallel Computational Models to Estimate
an Actual Speedup of Analyzed Algorithm

Igor Konshin1,2,3(B)

1 Dorodnicyn Computing Centre of the Russian Academy of Sciences,
Moscow 119333, Russia

Igor.Konshin@gmail.com
2 Institute of Numerical Mathematics of the Russian Academy of Sciences,

Moscow 119333, Russia
3 Lomonosov Moscow State University, Moscow 119991, Russia

Abstract. The paper presents two models of parallel program runs on
platforms with shared and distributed memory. By means of these mod-
els, we can estimate the speedup when running on a particular com-
puter system. To estimate the speedup of OpenMP program the first
model applies the Amdahl’s law. The second model uses properties of
the analyzed algorithm, such as algorithm arithmetic and communica-
tion complexities. To estimate speedup the computer arithmetic perfor-
mance and data transfer rate are used. For some algorithms, such as the
preconditioned conjugate gradient method, the speedup estimations were
obtained, as well as numerical experiments were performed to compare
the actual and theoretically predicted speedups.

Keywords: Parallel computations · Computational complexity ·
Communication complexity · Speedup

1 Introduction

During the last decades a parallel computing has been the basic tool for the
solution of the most time consuming problems of mathematical physics, linear
algebra, and many other branches of modern supercomputer application [1].
The most fitted parallel computational model allows to adequately estimate the
numerical algorithms efficiency. It gives a possibility to compare the performance
of the analyzed algorithms for the concrete architectures and choose the most
successful ones in advance.

There are a lot of parallel computation models (see, for example, [1–3]),
however some of them are too superficial to estimate the quantitative speedup
values, on the contrary the other requires to take into account too detailed
information on the algorithm and a run of code implementation. Moreover, the
most of the models do not reflect the peculiarity of the architectures of the
computers, on which the implemented algorithms are running. Using only macro-
structure of algorithms there would be interesting to decide which algorithm

c© Springer International Publishing AG 2016
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2016, CCIS 687, pp. 304–317, 2016.
DOI: 10.1007/978-3-319-55669-7 24

igor.konshin@gmail.com

Parallel Computational Models to Estimate an Actual Speedup 305

properties are the most important for deriving of practical quantitative speedup
estimates and which computation systems characteristics could be applied to get
these estimates.

To analyze an algorithm properties for different computer architectures, for
example, for computers with the shared or distributed memory fitted computa-
tional models may be required. While analyzing algorithms for each computa-
tional model a knowledge of the conditions and regions of the model applicability
becomes very important.

This paper describes two parallel computation models, presents the efficiency
estimations obtained on their base, and defines the conditions of their applica-
tions. Specification and analysis of the parallel efficiency upper bounds estimates
are performed for some linear algebra algorithms, including the preconditioned
conjugate gradient method. The qualitative comparison of estimates obtained
and results of numerical experiments are presented.

2 Parallel Computational Model for the Shared Memory
Computers

Let the parallel computations be performed on a shared memory computer and
programming environment OpenMP be used for parallelization. In the most
simple cases, OpenMP can be treated as an insertion of compiler directives
for loops parallelization. At some intermediate parallelization stage or due to
intrinsic algorithm properties some arithmetic operations can be performed in a
serial mode.

Let us consider that the computations are sufficiently uniform by the set of
arithmetic operations performed and, in principle, we can calculate the amount
of such operations and obtain the total numbers of parallel and serial operations.
Let the fraction of serial operation be f ∈ [0; 1] (this value sometimes is denoted
by “s” from “serial” but we are not doing so to separate the usage of “S” for
speedup).

If the time T for the arithmetic operations is linear with respect to the number
of arithmetic operations, then it is easy to estimate the maximum speedup, which
can be obtained for some implementation of the considered algorithm.

2.1 Amdahl’s Law

Let denote by T (p) the time of program running on p processors, than the
speedup received for computations using p processors will be expressed by clas-
sical formula:

S(p) = T (1)/T (p). (1)

If the fraction of serial operations is equal to f , then using formula (1) we can
estimate the maximum achievable speedup by the following way:

S(p) = T (1)/(fT (1) + (1 − f)T (1)/p)) = p/(1 + f(p − 1)). (2)

igor.konshin@gmail.com

306 I. Konshin

The last formula expresses the Amdahl’s law [5]. It can also be treated in more
general case as the maximum achieved speedup which can be obtained for arbi-
trary parallel architecture for the analyzed algorithm or the program code [6].

For the analysis of the obtained formula (2) it can be noted that if the fraction
of serial operations is just 1%, then when running the program on 100 proces-
sors, the serial part of the code on a single processor will take about the same
time as the parallel part of operations on 100 processors. It results in about 50
speedup (or 50% of efficiency). If the number of processors used can be arbitrar-
ily increased, then the maximum achieved speedup will be equal to S = 1/f .
Another extreme case is the linear speedup S(p) = p achieved for f = 0.

In addition, we can define the best conditions of the Amdahl’s law applicabil-
ity for a shared memory computer, that is, when the algorithm actual speedup
will be close to the estimated by (2). The basic conditions are:

– the arithmetic operations are quite uniform;
– all the used threads take part in the computations of the parallel part of the

code;
– load balancing for all active threads;
– scalability of threads usage, i.e., the performance of the threads does not

depend on the threads number (or, in other words, the execution time for
the parallel part of the code is actually p times reduced when running on p
threads).

Let us analyze the last condition in more detail.

2.2 Actual Efficiency of the Parallel Program

Let us inquire the issue: which maximum speedup can be achieved for the ideally
parallel algorithm on some parallel computer cluster.

We consider implementation of DAXPY operation from BLAS1, which with
the OpenMP directive can be written as following:

#pragma omp parallel for
for (i=0; i<n; i++) y[i] += a * x[i];

The numerical experiments were performed on the computer cluster [7] of the
Institute of Numerical Mathematics of the Russian Academy of Sciences (INM
RAS). The computer nodes specification from x6core queue that has been used
for the experiments are:

– Compute Node Asus RS704D-E6;
– 12 cores (two 6-cores processors Intel Xeon X5650@2.67GHz);
– RAM memory: 24 GB;
– Disc memory: 280 GB;
– Operating system: SUSE Linux Enterprise Server 11 SP1 (x86 64).

igor.konshin@gmail.com

Parallel Computational Models to Estimate an Actual Speedup 307

Table 1. The efficiency of the DAXPY operation within OpenMP and MPI
environment.

p E∗
omp S∗

omp E∗
mpi S∗

mpi

1 1.000 1.00 1.000 1.00

2 0.939 1.87 0.948 1.89

3 1.778 5.33 0.994 2.98

4 1.929 7.71 0.987 3.94

5 1.496 7.48 0.994 4.97

6 1.481 8.89 0.986 5.92

7 1.095 7.66 0.997 6.98

8 1.011 8.09 0.977 7.82

9 0.863 7.77 0.988 8.89

10 0.842 8.42 0.933 9.33

11 0.638 7.02 0.960 10.56

12 0.385 4.63 0.985 11.82

The Intel C compiler 4.0.1 with the MPI 5.0.3 support was used.
For comparison, the above mentioned code fragment has been run not only

under the OpenMP environment but under MPI environment as well. The values
of speedup (1) and the efficiency E = S/p obtained are given in Table 1. Some
specific results were defined for the parallelization by OpenMP:

– the expected reduction of the efficiency E∗
omp for large number of threads

p = 11, 12 due to insufficient bandwidth of the memory channel;
– the unexpected superlinear speedup for p = 3, ..., 8 threads, that violate the

Amdahl’s law, probably due to coherent memory access operations and effec-
tive compiler processing.

In case of the MPI implementation the computational efficiency E∗
mpi for

such an “ideal” algorithm has expectedly been very close to 1.
Thus, if we would like to improve the formula of the Amdahl’s law (2) in

accordance with the specific of the numerical experiment on the certain computer
cluster, we should multiply the right-hand side of the Eq. (2) by E∗

omp:

S(p) = pE∗
omp/(1 + f(p − 1)). (3)

The value of E∗
omp here would be considered as given in tabular form in accor-

dance with Table 1. Then the possible superlinearity would be included in for-
mula (3), that prevents the failure of the Amdahl’s law.

3 Parallel Computation Model for Distributed Memory
Computers

The key peculiarity of the parallel algorithm execution on the distributed mem-
ory computer is a memory exchange operations and an additional loss of the

igor.konshin@gmail.com

308 I. Konshin

efficiency connected there with. Issues connected with the memory exchanges
can be considered in more detail.

3.1 Message Transmission Rate

To estimate the time spent at the data exchanges the well-known formula can
be used:

Tc = τ0 + τcLc, (4)

where τ0 is the initialization time for the message transmission, τc is the rate of
the data exchange (i.e., measured by time of the data exchange of unit length), Tc

is the time spent for the transmission of length Lc. Generally, the initialization
time τ0 (latency of the transmission) can be rather long, for example, τ0 =
100τc, i.e., the time spent for transmission of 100 words can take just only two
times more than the transmission of one word. However, if the length of the
transmission is large enough, for example, greater than 1000, than the latency
can be neglected.

The most effective algorithm implementation would be the implementation of
a transmission of great length. Such an algorithms are called the algorithms with
“large-grained” parallelism. If this algorithms class is analyzed, the simplified
formula can be applied:

Tc = τcLc. (5)

In other words, we neglect the latency of the communication network and con-
sider that the rate of data transmission is specified only by network capacity. It
should be noted that in the specified propositions the transmission time becomes
linear with respect to the data length. Additionally, it means that the total length
of all transmissions will define the total transmission time for several successive
transmissions. Subsequently, this fact allows us to essentially simplify the effi-
ciency estimation of the parallel algorithms analyzed.

3.2 Estimate of the Algorithm Parallel Efficiency

Let us introduce the same notations as in Subsect. 2.1. Let p be the number of
processors used and T (p) be the execution time for the algorithm on p proces-
sors. Respectively, the speedup that can be obtained by the algorithm will be
expressed by the formula S = T (1)/T (p), while the efficiency of the algorithm
will be specified by the ratio E = S/p.

To estimate the computation time for the algorithm we need the knowledge of
both characteristics of the analyzed algorithm and the parameters of the parallel
computer used.

Let La be the total number of arithmetic operations of the algorithm and τa
is the time spent per one such operation. Similar, let Lc be the total transmission
length and τc be the time of transmission of the unit length. Then, the total time
for arithmetic operations can be expressed by the formula Ta = τaLa and the
total time for communications is Tc = τcLc.

igor.konshin@gmail.com

Parallel Computational Models to Estimate an Actual Speedup 309

Now, everything is ready to speedup estimation, but we introduce two aux-
iliary values. The first one will describe the general characteristic of the parallel
computer properties:

τ = τc/τa, (6)

specifying how many arithmetic operations can be performed when transmitting
a number from one processor to another (in case of theoretically unlimited fast
data transmissions or formally synchronous transmissions, τ = 0; for computers
with sufficiently fast transmissions we can expect approximately τ = 10; while
on case of slow communications we have about τ = 100).

The second important value is the characteristic of the algorithm parallel
properties:

L = Lc/La, (7)

denoting a value being reverse to how many arithmetic operations are actually
performed by the algorithm when transmitting a number.

Finally, we can estimate the speedup:

S = S(p) = T (1)/T (p) = Ta/(Ta/p + Tc/p) = pTa/(Ta + Tc) = p/(1 + Tc/Ta)
= p/(1 + (τcLc)/(τaLa)) = p/(1 + τL), (8)

and, analogously, estimate the efficiency:

E = S/p = 1/(1 + τL). (9)

As a result, we obtain a fairly simple formula for efficiency estimate, depending
on two parameters τ and L only, characterizing parallel properties of computer
and algorithm, respectively. At first glance, it is surprising that the last formula
has no explicit dependence on the number of processors p, but what actually
happens is that it implicitly presents in characteristic L via the dependence of
all transmissions Lc total length with the given amount of processors p.

Let us summarize the assumptions that has been made during derivation of
the upper bound of the speedup and efficiency of the parallel algorithm when
running on the shared memory computer:

– in contrast to the Amdahl’s law formula, it is considered that all computations
are completely parallelizable and sequential part of the algorithm is absent
(f = 0);

– the delay in computations is due to the data transmissions only, and the
algorithms with synchronous communications are mainly suited for this model;

– parallel computations are well balanced, i.e., there is no delay due to
imbalance;

– computational nodes are uniform, it means that parameter τ is the same for all
nodes (though as it is known MPI can be performed on nonuniform computer
systems);

– the arithmetic operations rate τa is independent on the number of processors
p (for distributed memory computers it is performed more frequently, than on
the shared memory computers with the use of OpenMP, see Table 1);

– the data transmission rate τc is independent on the number of processors p as
well (this less obvious fact means the scalability of communication network).

igor.konshin@gmail.com

310 I. Konshin

3.3 Estimation of the Linear Algebra Algorithms Parallel Efficiency

Let us consider the application of the constructed speedup and efficiency esti-
mates for some examples of linear algebra algorithms.

Example 1 (ideally parallel operations).

(a) Sum of two vectors:

Zi = Xi + Yi, i = 1, ..., n. (10)

(b) Vector normalization (multiplication by a constant):

Xi = αXi, i = 1, ..., n. (11)

(c) AXPY operation (as a combination of two above mentioned operations,
intensively used in numerical methods, implemented in BLAS1):

Yi = αXi + Yi, i = 1, ..., n. (12)

(d) Multiplication of block-diagonal matrix by a vector, each block corresponds
to certain processor, moreover a sparsity structure inside each block does
not matter if total amount of nonzero elements inside blocks are about the
same.

(e) Solution of linear system with block-triangular matrix when performing
forward or backward substitutions. As in the previous case, the block
structure can be arbitrary if the number of nonzero elements in each block
triangle is about the same.

It is obvious that for these operations it is not necessary to perform the
data transmissions (Lc = 0, and hence L = 0), therefore the speedup will be
linear: S = p for any value of τ , and the efficiency will be overall: E = 1. The
computations are independent, and for cases (a)–(c) it is possible to exploit
maximum number of processors p = n. It should be noted that in all cases the
uniform load balancing is assumed, i.e., vector components amount for the cases
(a)–(c) and number of nonzero elements inside the block for the cases (d) and (e).

Example 2 (dot product or inner product).

c =
n∑

i=1

XiYi. (13)

Firstly, we should locally compute the partial sum at each processor, and then it
is necessary to compute the total summation and send the result to processors.
By means of MPI library it can be done by using, for example, the function
MPI Allreduce(). The way of this function implementation is not fixed in MPI
standard and is left at the discretion of specific MPI implementation. However,
to estimate the speedup we can apply the simplest way by sending the partial

igor.konshin@gmail.com

Parallel Computational Models to Estimate an Actual Speedup 311

sums to a master processor and perform summation on it, and then distribute
a result to other processors.

The total number of arithmetic operations (considering the summation with
multiplication as a single operation, as well as a separate summation on the
master processor) will be equal to La = n + (p − 1), but the total length of all
data exchanges is Lc = 2(p − 1).

As while calculating L we are interested only in the ratio of these values, it
is more convenient to write them down with respect to a local processor, i.e.,
La = (n + (p − 1))/p and Lc = 2(p − 1)/p. Further, if not stated otherwise we
will mean precisely such estimates.

As a result, the speedup estimate will look like:

L = Lc/La = 2(p − 1)/(n + (p − 1)), (14)
S = p/(1 + 2(p − 1)τ/(n + (p − 1))). (15)

For example, for n = 106 and τ = 10 we can calculate several estimate values:

S(p = 1) = 1, S(p = 100) ≈ 99.8, S(p = 1000) ≈ 980, (16)

and for τ = 100 with the same vector dimension we obtain:

S(p = 1) = 1, S(p = 100) ≈ 98, S(p = 1000) ≈ 800. (17)

The dot product operation is very important and is frequently used in linear
algebra. It is observed that in case the amount of processors increases up to
p = 1000, there is a drastic fall of operation speed. The estimations provided by
this paper indirectly confirm this observation.

Example 3 (multiplication of a dense matrix by a vector). Let us consider the
matrix-by-vector multiplication for dense square matrix:

Yi =
n∑

j=1

AijXj , i = 1, ..., n, (18)

considering that on each processor the portion of block rows are stored, as well
as the corresponding parts of vectors X and Y :

[:] [== == ==] [:]
--- ---------- ---
[:] = [== == ==] * [:]
--- ---------- ---
[:] [== == ==] [:]

To perform the multiplication, it is necessary to collect on each processor the
copy of vector X of full dimension, and then to perform multiplication on the
local part of the matrix A located on the processor.

igor.konshin@gmail.com

312 I. Konshin

Let n be a matrix dimension, and the matrix rows are distributed by proces-
sors equally, then:

La = n2/p, Lc = (n/p)(p − 1), L = Lc/La = (p − 1)/n, (19)

S = p/(1 + (p − 1)τ/n). (20)

If n = 1000 and τ = 10, then S(p = 1) = 1, S(p = 10) ≈ 9, S(p = 100) ≈ 50.

Example 4 (multiplication of a transposed dense matrix by a vector). Let us con-
sider the matrix-by-vector multiplication for a transposed dense square matrix:

Yi =
n∑

j=1

AT
ijXj , i = 1, ..., n, (21)

considering that on each processor the portion of block rows of A (block columns
of AT) is stored, as well as the corresponding parts of vectors X and Y :

[:] [:: :: ::] [:]
--- ---
[:] = [:: :: ::] * [:]
--- ---
[:] [:: :: ::] [:]

To perform the multiplication, first, it is necessary to compute the local
partial sum Z (of full dimension) as the product of the local block columns
and the local part of the vector X, then send the parts of the vector Z to the
respective processors, and, finally, sum the received parts of the vector Z to
obtain the final local part of the vector Y .

Let n be the matrix dimension, then:

La = n2/p, Lc = (n/p)(p − 1), L = Lc/La = (p − 1)/n, (22)

S = p/(1 + (p − 1)τ/n). (23)

It is surprising, that, despite of the very different algorithm structure, the
obtained estimate is the same as in Example 3. This is due to the same total
length of interprocessor communications.

Example 5 (multiplication of a band matrix by a vector). Let us consider the
matrix-by-vector multiplication for a band matrix stored by rows considering as
it was stated before that each processor stores a portion of matrix rows as well
as the corresponding parts of vector X and the resulting vector Y :

[:] [===] [:]
--- --------- ---
[:] = [===] * [:]
--- --------- ---
[:] [===] [:]

igor.konshin@gmail.com

Parallel Computational Models to Estimate an Actual Speedup 313

The portion of block rows of matrix A is stored on each processor, as well as
the corresponding parts of vectors X and Y .

Let n be the dimension and r be the bandwidth of the matrix, then in order to
perform the multiplication of the local part of the matrix each processor should
additionally receive r components of vector X from two neighbouring processors:

La = (2r + 1)n/p, Lc = 2r(p − 1)/p, (24)

L = (2r/(2r + 1))(p − 1)/n ≈ (p − 1)/n, S ≈ p/(1 + (p − 1)τ/n). (25)

The most surprising in this estimate is the fact that it reproduces almost exactly
the previous estimates and is almost independent on the half bandwidth r. It
means, that although the number of arithmetic operation is reduced, the com-
munication length is reduced in the same proportion.

Example 6 (multiplication of a sparse multi-diagonal matrix by a vector). Let us
consider the matrix-by-vector multiplication for a sparse matrix with nonzero
elements located on diagonals corresponding some discretization stencil. Let each
processor stores a portion of matrix rows as well as the corresponding parts of
vector X and the resulting vector Y :

[:] [\\ \] [:]
--- ----------- ---
[:] = [\ \\\ \] * [:]
--- ------------ ---
[:] [\ \\] [:]

Let n be the dimension and r be the semi-bandwidth of the matrix, and
d be the total number of diagonals in the matrix (or number of vertices in
the discretization stencil), then in order to perform the multiplication of the
local part of the matrix A each processor (as in the previous example) should
additionally receive r components of vector X from two neighbouring processors:

La = dn/p, Lc = 2r(p − 1)/p, L = 2r(p − 1)/(dn), (26)

S = p/(1 + 2r(p − 1)τ/(dn)). (27)

It worth to note, that for two-dimensional problem of size n = m × m with the
use of 5-point discretization stencil the parameters of sparse matrix are equal to
r = m and d = 5. For three-dimensional problem of size n = m × m × m with
the use of 7-point discretization stencil we should take r = m2 and d = 7.

It is worth to note, that the effective semi-bandwidth of the matrix depends
on distribution of the domain to processors, for example, in three-dimensional
case it is advantageous to cut the domain by 3D domains but not by slices. It may
essentially reduce the total communication length and increase the efficiency of
the sparse matrix-by-vector operation.

However, in comparison with the multiplication by a matrix with a dense
band, the low efficiency of such an operation is due to the respectively less
number of arithmetic operation for the same semi-bandwidth, and consequently
for the same communication costs.

igor.konshin@gmail.com

314 I. Konshin

3.4 Conjugate Gradient Method

As the final example, we derive the estimate for the preconditioned conjugate
gradient (PCG) method [8].

We consider the most simple but frequently used preconditioner: the block
Jacobi structure with no overlap and incomplete Cholesky IC0 factorization of
each block. The basic operations involved in this algorithm have already been
studied in Subsect. 3.3:

– three “AXPY” operations (Example 1c);
– two inner “DOT” products (Example 2);
– multiplication of a sparse multi-diagonal matrix by a vector “MVM”

(Example 6);
– solution of linear system with block-diagonal preconditioner matrix “SOL”

(Example 1e).

We can write out now the speedup estimate for an iteration of PCG
algorithm.

Example 7 (conjugate gradient method). The computational and communica-
tional costs for a single iteration of conjugate gradient method with IC0 precon-
ditioning consist of

La = 3LAXPY
a + 2LDOT

a + LMVM
a + LSOL

a

= 3(n/p) + 2(n/p) + (dn/p) + (dn/p) = (2d + 5)n/p, (28)
Lc = 3LAXPY

c + 2LDOT
c + LMVM

c + LSOL
c

= 3 · 0 + 2(2(p − 1)/p) + (2r(p − 1)/p) + 0 = (2r + 4)(p − 1)/p. (29)

After that the “parallelism” characteristic of the algorithm can be expressed as

L = Lc/La = (2r + 4)(p − 1)/((2d + 5)n), (30)

while the speedup estimation will be expressed as follows:

S = p/(1 + τL) = p/(1 + (2r + 4)τ(p − 1)/((2d + 5)n)). (31)

3.5 Numerical Experiment and Comparison with the Speedup
Estimate

For the numerical experiments INM RAS cluster [7] with already described in
Subsect. 2.2 computational nodes from queue “x6core” was used.

First, we compute the “parallelism” characteristic of the computer, which was
applied in Subsect. 3.2 when deriving the estimate. Operation DOT over double
precision vectors of length 106 was used to estimate the arithmetic performance
of the cluster, while two simultaneous asynchronous data exchanges with the
double precision vectors of the same length was used to estimate the transmission

igor.konshin@gmail.com

Parallel Computational Models to Estimate an Actual Speedup 315

rate. The communications were performed without overlapping with arithmetic
operations. The following values were obtained:

τa = 3.14 · 10−10, τc = 3.06 · 10−8. (32)

It means that the main “parallelism” characteristic of the computer can be set
to:

τ = τc/τa = 100. (33)

To verify the obtained estimates the developed in the INM RAS parallel program
platform INMOST [9] was used. It can be loaded as a source code from [10]. As
the model problem we have used the test program solver test002 developed by
the author of the paper, the program is accessible from the same site as well. The
linear system matrix were constructed by discretization of 3D 7-point stencil for
the domain of size n = m × m × m. The resulting linear system was solved by
PCG method from the external package PETSc [11]. The additive Swartz method
with no overlap and IC0 factorization in subdomains was used by setting the
following parameters:

-ksp_type cg
-pc_type asm
-pc_asm_overlap 0
-sub_pc_type ilu
-sub_pc_factor_levels 0

A set of problems with different dimensions was considered, the dimension of
domain in each direction was m = 64, 96, 128, 160. The total number of unknowns
ranged from about 262 thousand to about 4 million, while a number of processors
was chosen equal to p = 1, 2, 4, 8, 16, 32, 64.

For the final form of the PCG method speedup formula estimated by (31) the
following parameters were used r = m2, n = m3, d = 7, and τ = 100. For four
considered linear systems the actual speedup with respect to the run on a single
processor were obtained, and the plots of theoretical estimates by formula (31)
were drawn as well. The obtained plots are presented on Figs. 1 and 2. It is worth
to note that the plots behavior is qualitatively coincided.

Fig. 1. The speedup estimated by formula (31) and the actual speedup for problems
with m = 64, 96, 128, 160.

igor.konshin@gmail.com

316 I. Konshin

Fig. 2. Comparison of estimated and actual speedup for problems with m =
64, 96, 128, 160.

4 Conclusions

Two parallel computation models were presented for computers with both shared
and distributed memory. Based on the macro-structure algorithm properties the
speedup estimates were obtained for runs on parallel computers. The estimate
for shared memory computers is built on the portion of serial computations of
the algorithm, while the estimate for distributed memory computer clusters is
based on the “parallelism” characteristics of both the considered algorithm and
the computer in use.

The numerical experiments demonstrate that the theoretical speedup esti-
mates and the actual experiment results are in qualitative agreement.

Acknowledgements. This work has been supported in part by RSF grant No. 14-
11-00190.

References

1. Voevodin, V.V.: Parallel Computing. BHV-Petersburg, St. Petersburg (2002). (in
Russian)

2. Bogachev, K.Y.: Parallel Programming. Binom, Moscow (2003). (in Russian)
3. Gergel, V.P., Strongin, R.G.: Parallel Computing for Multiprocessor Computers.

NGU Publ., Nizhnij Novgorod (2003). (in Russian)
4. AlgoWiki: open encyclopedia of algorithm properties. http://algowiki-project.org.

Accessed 15 June 2016
5. Amdahl, G.M.: Validity of the single-processor approach to achieving large scale

computing capabilities. In: AFIPS Conference Proceedings, Atlantic City, NJ, 18–
20 April, vol. 30, pp. 483–485. AFIPS Press, Reston (1967). http://www-inst.eecs.
berkeley.edu/n252/paper/Amdahl.pdf. Accessed 15 June 2016

igor.konshin@gmail.com

Parallel Computational Models to Estimate an Actual Speedup 317

6. Antonov, A.: Under the Amdahl’s law, No. 430. Computerra (2002)
7. INM RAS cluster. http://cluster2.inm.ras.ru. Accessed 15 June 2016 (in Russian)
8. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS, Boston (1996)
9. Vassilevski, Y., Konshin, I., Kopytov, G., Terekhov, K.: INMOST - A Soft-

ware Platform and Graphical Environment for Development of Parallel Numerical
Models on General Meshes. Moscow State University Publ., Moscow (2013). (in
Russian)

10. INMOST - a toolkit for distributed mathematical modeling. http://www.inmost.
org. Accessed 15 June 2016

11. PETSc (Portable, Extensible Toolkit for Scientific Computation). https://www.
mcs.anl.gov/petsc. Accessed 15 June 2016

igor.konshin@gmail.com

