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ILU PRECONDITIONERS FOR NONSYMMETRIC SADDLE-POINT
MATRICES WITH APPLICATION TO THE INCOMPRESSIBLE

NAVIER–STOKES EQUATIONS∗

IGOR N. KONSHIN† , MAXIM A. OLSHANSKII‡ , AND YURI V. VASSILEVSKI§

Abstract. Motivated by the numerical solution of the linearized incompressible Navier–Stokes
equations, we study threshold incomplete LU factorizations for nonsymmetric saddle-point matrices.
The resulting preconditioners are used to accelerate the convergence of a Krylov subspace method
applied to finite element discretizations of fluid dynamics problems in three space dimensions. The
paper presents and examines an extension for nonsymmetric matrices of the Tismenetsky–Kaporin
incomplete factorization. It is shown that in numerically challenging cases of higher Reynolds number
flows one benefits from using this two-parameter modification of a standard threshold ILU precon-
ditioner. The performance of the ILU preconditioners is studied numerically for a wide range of flow
and discretization parameters, and the efficiency of the approach is shown if threshold parameters are
chosen suitably. The practical utility of the method is further demonstrated for the haemodynamic
problem of simulating blood flow in a right coronary artery of a real patient.
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1. Introduction. This research is motivated by the numerical solution of the
Navier–Stokes equations governing the flow of viscous incompressible Newtonian flu-
ids. For a bounded domain Ω ⊂ Rd (d = 2, 3) with boundary ∂Ω, time interval [0, T ],
and data f , g, and u0, the goal is to find a velocity field u = u(x, t) and pressure field
p = p(x, t) such that

(1.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu+ (u · ∇)u+∇p = f in Ω× (0, T ],

div u = 0 in Ω× [0, T ],

u = g on Γ0 × [0, T ], −ν(∇u) · n+ pn = 0 on ΓN × [0, T ],

u(x, 0) = u0(x) in Ω,

where ν is the kinematic viscosity, Δ is the Laplacian, ∇ is the gradient, and div is
the divergence; ∂Ω = Γ0 ∪ ΓN and Γ0 �= ∅. Different flow regimes are characterized
by the dimensionless Reynolds number Re = UL

ν , where U and L are characteristic
velocity and linear dimension. Solving (1.1) numerically is known to get harder for
higher values ofRe. Implicit time discretization and linearization of the Navier–Stokes
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system (1.1) by Picard fixed-point iteration result in a sequence of (generalized) Oseen
problems of the form

(1.2)

⎧⎪⎨⎪⎩
αu− νΔu+ (w · ∇)u+∇p = f̂ in Ω,

div u = ĝ in Ω,

u = 0 on Γ0, −ν(∇u) · n+ pn = 0 on ΓN,

where w is a known velocity field from a previous iteration or time step, α is pro-
portional to the reciprocal of the time step (α = 0 for a steady problem), and the
right-hand side accounts for nonhomogenous boundary conditions in the nonlinear
problem.

Finite element (FE) spatial discretization of (1.2) results in large, sparse systems
of the form

(1.3)

(
A BT

B −C
)(

u
p

)
=

(
f
g

)
,

where u and p represent the discrete velocity and pressure, respectively, A ∈ Rn×n

is the discretization of the diffusion, convection, and time-dependent terms, BT ∈
Rn×m is the discrete gradient, B is the (negative) discrete divergence, C ∈ Rm×m

is a matrix resulting from possible pressure stabilization terms, and f and g contain
forcing and boundary terms. If a discretization satisfies the LBB (“inf-sup”) stability
condition [15], no pressure stabilization is required and so C = 0 holds. If the LBB
condition is not satisfied, the stabilization matrix C �= 0 is symmetric and positive
semidefinite and the actual structure of C depends on the particular FE pair being
used. For a symmetric positive definite A, solving (1.3) is equivalent to finding the
saddle point of a Lagrangian, and so the system (1.3) is often referred to as a saddle-
point system. In the literature, it is now common to refer to (1.3) as a nonsymmetric
or generalized saddle-point system if A �= AT .

The efficient solution of systems of the form (1.3) necessitates rapidly conver-
gent iterative methods. Thus, in the last decade, considerable work has been done in
developing efficient preconditioners for Krylov subspace methods applied to incom-
pressible flow problems; see the comprehensive treatments in [3, 12, 29]. It is typical
for the preconditioning to exploit explicitly the block structure of the system (1.3). A
popular approach builds upon preconditioners to the submatrix A and pressure Schur
complement matrix S = BA−1BT + C; see [13, 30, 43] for recent developments. Re-
lated to this class of methods are preconditioners based on the augmented Lagrangian
reformulation of the saddle-point problem [5]. Block preconditioners based on an ad-
ditive splitting include the Hermitian and skew-Hermitian splitting approach [2] and
a dimensional split approach [4]. Constrained block preconditioners for nonsymmetric
saddle-point matrices are treated in [7]. While the block preconditioners have proven
to be effective in many cases, they are not yet completely robust with respect to
variations of viscosity parameter, properties of advective velocity field w, grid size,
and anisotropy ratio. The discussion of geometric and algebraic multigrid precondi-
tioners for the Oseen problem can be found in [41, 44]. For the assessment of block
preconditioners in the haemodynamics context we refer to the recent paper [10].

An interesting alternative to block preconditioners for the Oseen problem is the
preconditioning based on elementwise incomplete factorizations of the 2 × 2 block
matrix from (1.3). Relatively little research is found in the literature on ILU pre-
conditioners for the discrete Oseen system and, more general, for saddle-point linear
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algebraic systems. A review of incomplete Cholesky-type preconditioners applicable
to symmetric saddle-point systems can be found in the recent reports [33, 34] (a sym-
metric system results from (1.2) if one sets w = 0). For nonsymmetric saddle-point
systems that arise from the FE discretization of the incompressible Navier–Stokes
equations the authors of [8, 42] developed ILU preconditioners, where the fill-in is
allowed based on the connectivity of nodes rather than actual nonzeros in the ma-
trix. The papers [35, 42] studied several reordering techniques for ILU factorization
of (1.3) and found that some of the resulting preconditioners are competitive with
the most advanced block preconditioners and are more straightforward to implement
in standard FE codes.

The present paper focuses on incomplete LU factorizations with thresholds. As far
as we are aware, threshold ILU factorizations for nonsymmetric saddle-point problems
resulting from fluid dynamics applications have not been well studied in the litera-
ture. The present paper carries out a systematic study of ILU(τ)-type preconditioner
performance and its dependence on the threshold parameter τ , viscosity coefficient
ν, as well as on mesh discretization, and time step parameters. The properties of
the advective velocity field w often also influence the performance of preconditioners,
since the algebraic connectivity of nodes may be strongly influenced by local direc-
tion of flow. To assess the performance of ILU preconditioners, we experiment with
unidirectional and complex three dimensional (3D) circulating flows including those
arising in haemodynamics applications.

The paper also devises estimates for the LU factorization numerical stability for
nonsymmetric saddle-point matrices. We show that if the (1,1)-block A is a positive
definite matrix, then the (exact) LU factorization of (1.3) exists and its numerical
stability is determined by the ellipticity constant of A and a quantity characterizing
a ratio of symmetric and skew-symmetric parts of A. The analysis is applied to the
discrete linearized Navier–Stokes equations and we discuss possible implications of
this analysis for the stability of incomplete LU factorizations.

While in many situations ILU(τ) with optimized τ provides inexpensive (in terms
of fill-in) and efficient (in terms of iteration counts) preconditioners for (1.3), for
higher Reynolds number flows (i.e., the case of small ν) further developments are
required. In such cases, we show that a two-parameter variant of the threshold ILU
factorization ILU(τ1,τ2) may lead to a significant improvement. For symmetric posi-
tive definite matrices, this factorization is also known in the literature as the second
order or Tismenetsky–Kaporin IC factorization. For both ILU(τ) and ILU(τ1,τ2), the
choice of optimal τ ’s depends on problem parameters. Numerical experiments show
that a choice of quasi-optimal parameters is feasible, leading to a preconditioner per-
formance fairly insensitive to the variation of α, grid anisotropy, complexity of w, and
depending mildly on ν. Finally, we consider a test case of a flow in a digitally recon-
structed right coronary artery of a real patient and for a set of parameters describing
a physiologically relevant blood flow scenario. The paper reports on the performance
of ILU preconditioners for this practical problem.

The remainder of the paper is organized as follows. In section 2 we give neces-
sary details on the discretization method. Section 3 discusses LU factorizations for
nonsymmetric saddle-point systems and its stability. Sufficient conditions on the ex-
istence of the LU factorization and an estimate on the entries of the LU factors are
given here in terms of the properties of the (1,1)-block A. Further, this analysis is
applied to the discretized system (1.2). Here sufficient conditions for positive defi-
niteness of the A-block are derived. These conditions are sufficient for the existence
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of an LU factorization without pivoting. In section 4, we introduce a two-parameter
Tismenetsky–Kaporin variant of the threshold ILU factorization for nonsymmetric
nondefinite problems, which is used further for numerical experiments. In section 5
we consider two benchmark problems: a 3D flow in a cylindrical vessel and a 3D
analog of the Beltrami flow proposed in [14]. For the discretization we use P2-P1
inf-sup stable FEs. For each of the problems we run experiments for a variety of
physical and discretization parameters and on a sequence of refined tetrahedral dis-
cretizations. Conclusions are made about the performance of preconditioners and the
suitable range of threshold parameters. Further we present results for the test case
of a flow in a right coronary artery. Section 6 collects conclusions and a few closing
remarks.

2. FE method. In this paper, we consider an inf-sup stable conforming FE
method. To formulate it, we first need the weak formulation of the Oseen problem.
Let V := {v ∈ H1(Ω)3 : v|Γ0 = 0}. Given f ∈ V′, the problem is to find u ∈ V and
p ∈ L2(Ω) such that

L(u, p;v, q) = (f ,v)∗ + (g, q) ∀ v ∈ V, q ∈ L2(Ω) ,

L(u, p;v, q) := α(u,v) + ν(∇u,∇v) + ((w · ∇)u,v)− (p, divv) + (q, divu) ,

where (·, ·) denotes the L2(Ω) inner product and (·, ·)∗ is the duality paring for V′×V.
We assume Th to be a collection of tetrahedra which is a consistent tetrahedriza-

tion of Ω satisfying the regularity condition

(2.1) max
τ∈Th

diam(τ)/ρ(τ) ≤ CT ,

where ρ(τ) is the diameter of a subscribed ball in τ . A constant CT measures the
maximum anisotropy ratio for Th. Further we denote hmin = minτ∈Th

diam(τ). Given
conforming FE spaces Vh ⊂ V, and Qh ⊂ L2(Ω), the Galerkin FE discretization of
(1.2) is based on the weak formulation: Find {uh, ph} ∈ Vh ×Qh such that

(2.2) L(uh, ph;vh, qh) = (f ,vh)∗ + (g, qh) ∀vh ∈ Vh, qh ∈ Qh .

In our experiments we shall use a P2-P1 Taylor–Hood FE pair, which satisfies the
LBB compatibility condition for Vh and Qh [15] and hence ensures well-posedness
and full approximation order for the FE linear problem. If one enumerates velocity
unknowns first and pressure unknowns next, then the resulting discrete system has
the 2× 2-block form (1.3) with C = 0.

3. LU factorization and properties of A and S. If the submatrices A and
C of (1.3) are positive definite and positive semidefinite, respectively, the whole 2×2-
block matrix is not sign definite. If C = 0, its diagonal has zero entries. In general,
LU factorization of such matrices requires pivoting (rows and columns permutations)
for stability reasons. However, exploiting the block structure and the properties of
blocks A and C, one readily verifies that the LU factorization

(3.1) A =

(
A BT

B −C
)

=

(
L11 0
L21 L22

)(
U11 U12

0 −U22

)
with low (upper) triangle matrices L11, L22 (U11, U22) exists without pivoting, once
det(A) �= 0 and there exist LU factorizations for the (1,1)-block

A = L11U11
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and the Schur complement matrix S := BA−1BT + C is factorized as

S = L22U22.

To check (3.1), one lets U12 = L−1
11 B

T and L21 = BU−1
11 .

An LU factorization of A exists if the matrix is positive definite, however, its
numerical stability (the relative size of entries in factors L11 and U11) may depend on
how large is the skew-symmetric part of A compared to the symmetric part. Indeed,
denote AS = 1

2 (A + AT ), AN = A − AS (we shall use similar notation for the sym-
metric and skew-symmetric parts of S). Denote by ‖ · ‖F the Frobenius matrix norm.
Theorem 4.2.4 from [16] gives the bound on the size of elements of L and U :

‖|L11||U11|‖F ≤ n
(‖AS‖+ ‖ANA

−1
S AN‖

)
,

where |C| = {|cij |} for a matrix C = {cij}. Due to the symmetry and negative
definiteness of ANA

−1
S AN it holds

‖ANA
−1
S AN‖ = − sup

x∈Rn

〈ANA
−1
S ANx, x〉
‖x‖2 .

The positive definiteness of A implies that AS is symmetric positive definite, and we

make the substitution x = A
− 1

2

S x′ to get, after simple computations,

‖ANA
−1
S AN‖ = sup

x∈Rn

‖A− 1
2

S ANA
− 1

2

S x‖2
‖A− 1

2

S x‖2
.

Using ‖AS‖ ≤ ‖A‖, ‖A 1
2

S ‖‖A
− 1

2

S x‖ ≥ ‖x‖, and, for symmetric AS , the identity

‖A 1
2

S ‖2 = ‖AS‖, we estimate

‖ANA
−1
S AN‖ ≤ sup

x∈Rn

‖A− 1
2

S ANA
− 1

2

S x‖2‖A 1
2

S ‖2
‖x‖2 = ‖A− 1

2

S ANA
− 1

2

S ‖2‖A 1
2

S ‖2

= ‖A− 1
2

S ANA
− 1

2

S ‖2‖AS‖ ≤ ‖A− 1
2

S ANA
− 1

2

S ‖2‖A‖ .
Hence, we deduce the following stability bound for the LU-factorization of the

positive definite matrix A:

(3.2)
‖|L11||U11|‖F

‖A‖ ≤ n
(
1 + ‖A− 1

2

S ANA
− 1

2

S ‖2
)
.

The positive definiteness of A implies that the Schur complement matrix is also pos-
itive definite, once BT has full column rank and C ≥ 0. This is easy to see from the
identities

(3.3) 〈Sq, q〉 = 〈Bv, q〉+ 〈Cq, q〉 = 〈v,BT q〉+ 〈Cq, q〉 = 〈Av, v〉 + 〈Cq, q〉,
which are true for q ∈ Rm and v := A−1BT q ∈ Rn. Therefore, if A is positive definite,
then S is also positive definite and the factorization S = L22U22 enjoys the stability
bound similar to (3.2):

‖|L22||U22|‖F
‖S‖ ≤ m

(
1 + ‖S− 1

2

S SNS
− 1

2

S ‖2
)
.
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Thus, in the case of a positive definite (1,1)-block, the quotients ‖A− 1
2

S ANA
− 1

2

S ‖
and ‖S− 1

2

S SNS
− 1

2

S ‖ are largely responsible for the stability of the LU factorization for

(1.3). The following lemma shows that it is sufficient to estimate ‖A− 1
2

S ANA
− 1

2

S ‖.
Lemma 3.1. Let A ∈ Rn×n be positive definite, then it holds

(3.4) ‖S− 1
2

S SNS
− 1

2

S ‖ ≤ ‖A− 1
2

S ANA
− 1

2

S ‖ =: CA.

Proof. Let ÃN = A
− 1

2

S ANA
− 1

2

S . We need the following identities [11]:

1

2

(
A−1 +A−T

)
= A

− 1
2

S (I − Ã2
N )−1A

− 1
2

S ,

1

2

(
A−1 −A−T

)
= A

− 1
2

S (I + ÃN )−1ÃN (I − ÃN )−1A
− 1

2

S .

(3.5)

Note that due to the skew symmetry of S
− 1

2

S SNS
− 1

2

S it holds |λ| = |Im(λ)| for λ ∈
sp(S

− 1
2

S SNS
− 1

2

S ), where we use sp(·) to denote the spectrum. We apply Bendixson’s
theorem [37] to estimate

‖S− 1
2

S SN S
− 1

2

S ‖ = max{|λ| : λ ∈ sp(S
− 1

2

S SNS
− 1

2

S )}
= max{|Im(λ)| : λ ∈ sp(S

− 1
2

S SNS
− 1

2

S )}

≤ sup
q∈Cm

|〈SN q, q〉|
〈SSq, q〉 .

(3.6)

Employing identities from (3.5), we can write

SS = BA
− 1

2

S (I − Ã∗
N )−1(I − ÃN )−1A

− 1
2

S BT + C,

SN = BA
− 1

2

S (I − Ã∗
N )−1ÃN (I − ÃN )−1A

− 1
2

S BT .

With the help of the substitution vq = (I − ÃN )−1A
− 1

2

S BT q in the right-hand side of
(3.6) and recalling that C is nonnegative definite, we obtain

‖S− 1
2

S SN S
− 1

2

S ‖ ≤ sup
q∈Cm

∣∣∣〈ÃNvq, vq〉
∣∣∣

〈vq, vq〉+ 〈Cq, q〉 ≤ sup
q∈Cm

∣∣∣〈ÃNvq, vq〉
∣∣∣

‖vq‖2 ≤ ‖ÃN‖.

An estimate on the entries of U12 and L21 factors in (3.1) would form a complete
picture of numerical stability of the factorization. The entries of these off-diagonal
blocks can be estimated as follows. Using ‖AB‖F ≤ ‖A‖‖B‖F we get

‖U12‖F = ‖L−1
11 B

T ‖F ≤ ‖L−1
11 ‖‖BT‖F = ‖U11A

−1‖‖BT ‖F ≤ ‖U11‖‖A−1‖‖BT ‖F .

With the help of (3.5) and noting ‖(I − ÃN )−1‖ ≤ 1 for a skew-symmetric ÃN , one
also estimates

‖A−1‖ ≤ 1

2

(‖A−1 +A−T ‖+ ‖A−1 −A−T ‖)
≤ ‖A− 1

2

S ‖2‖(I − Ã2
N )−1‖+ ‖A− 1

2

S ‖2‖(I − ÃN )−1‖‖(I + ÃN )−1‖‖ÃN‖
≤ ‖A− 1

2

S ‖2(1 + CA) = λmax(A
− 1

2

S )2(1 + CA) =
1 + CA

cA
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with the matrix A ellipticity constant cA = λmin(AS). Repeating the same arguments
for ‖L21‖F , we arrive at the following bound:

‖U12‖F + ‖L21‖F
(‖U11‖+ ‖L11‖)‖B‖F ≤ m(1 + CA)

cA
.

The above analysis indicates that the LU factorization for (1.3) exists if the (1,1)-
block A is positive definite and the stability bounds depend on the constant CA which
measures the ratio of skew symmetry for A and the ellipticity constant cA. In section
3.1 below, we estimate CA and cA for the discrete linearized Navier–Stokes system.
In section 4, we argue why this analysis still of interest if one focuses on incomplete
factorization.

3.1. Properties of A and S. To study matrix properties, we invoke the FE
formulation from section 2. Recall that we assume an inf-sup FE method, and so
matrix C is zero. The analysis below can be extended for stabilized elements (C �= 0),
however, this makes arguments more technical and lengthy, since the properties of C
depend on the particular choice of stabilization parameters, which further depend on
problem parameters. We avoid these extra details and treat only stable elements. Let
{ϕi}1≤i≤n and {ψj}1≤j≤m be bases of Vh and Qh, respectively. For arbitrary v ∈ Rn

and corresponding vh =
∑n

i=1 viϕi, it holds

(3.7) 〈Av, v〉 = α‖vh‖2 + ν‖∇vh‖2 + 1

2

∫
ΓN

(w · n)|vh|2 ds+ 1

2
((divw)vh,vh),

where n is an outward normal on ΓN. We shall also need the velocity mass and
stiffness matrices M , K: Mij = (ϕi, ϕj), Kij = (∇ϕi,∇ϕj) and the pressure mass
matrix Mp: (Mp)ij = (ψi, ψj).

While the first two terms on the right-hand side of (3.7) are positive, handling
the rest of the terms requires some care. If ΓN is an outflow part of the boundary,
i.e., (w · n) > 0, then the boundary integral is nonnegative. However, in practice, it
is not uncommon when (w · n) < 0 on a part of ΓN, and one likely can find such a
vh that the boundary integral in (3.7) is negative. Hence, we shall estimate this term
using a FE trace inequality. We remark that modifications of boundary conditions
from (1.1) on ΓN are known, which insures that the resulting boundary integral is
always nonnegative; see, e.g., [6]. Other artificial outflow boundary conditions, which
lead to Dirichlet conditions in (1.2) on the entire boundary, are also common in fluid
dynamics; see, e.g., [28, 32], in this case ΓN = ∅.

Next, if one assumes the incompressibility condition (second equation in (1.1)) to
hold true for the advection velocity field w, then the fourth term on the right-hand
side vanishes. In practice, however, w is typically a FE velocity field, i.e., w ∈ Vh,
which satisfies only weak divergence free constraint: (divw, qh) = 0 ∀ q ∈ Qh. For
most stable FE for fluids and, in particular, for P2-P1 elements this weak divergence
free equation does not imply divw = 0 pointwise (see [18, 27] and references therein
for recent attempts to deal with this problem). Another possible way of getting rid
of the (divw)-dependent term in (3.7) is to “skew symmetrize” the bilinear form by
adding the consistent term 1

2 ((divw)uh,vh) to the FE formulation [39]. Otherwise
the last term on the right-hand side of (3.7) should be controlled. We make the above
conclusions more precise in Theorem 3.2 below. The theorem gives estimates on the
ellipticity constant cA and the stability constant CA from (3.4).
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To formulate the result we need some preliminaries. First, recall the trace in-
equality

(3.8)

∫
ΓN

|vh|2 ds ≤ C0‖∇vh‖2 ∀ vh ∈ Vh,

which allows control of the boundary term in (3.7) by the diffusion term, if ν is
sufficiently large. To exploit the zero order term in (3.7), we need the FE trace and
inverse inequalities

(3.9)

∫
∂τ

v2
h ds ≤ Ctrh

−1
τ ‖vh‖2τ , ‖∇vh‖τ ≤ Cinh

−1
τ ‖vh‖τ ∀ τ ∈ Th, vh ∈ Vh,

where the constants Ctr, Cin depend only on the polynomial degree k and the shape
regularity constant CT from (2.1). In addition, denote by Cf the constant from the
Friedrichs inequality

(3.10) ‖vh‖ ≤ Cf‖∇vh‖ ∀ vh ∈ Vh.

Let Cw := ‖(w · n)−‖L∞(ΓN).
To avoid the repeated use of generic but unspecified constants, in the remainder

of the paper the binary relation x � y means that there is a constant c such that
x ≤ c y, and c does not depend on the parameters which x and y may depend on, e.g.,
ν, α, mesh size, and properties of w. Obviously, x � y is defined as y � x.

Theorem 3.2. Assume that w ∈ L∞(Ω), and problem and discretization param-
eters satisfy

(3.11)

⎧⎪⎨⎪⎩
CwCtrh

−1
min ≤ α

4
or CwC0 ≤ ν

4
,

‖divw‖L∞(Ω) ≤ 1

4
max{α, νC−1

f }

with constants defined in (3.8)–(3.10). Then the matrix A is positive definite and it
holds

(3.12) 〈Av, v〉 ≥ 1

4
〈(αM + νK)v, v〉 ∀ v ∈ Rn and CA � 1 +

‖w‖L∞(Ω)√
να + ν + hminα

,

where CA is the constant defined in (3.4), and hence cA ≥ 1
4λmin(αM + νK).

Furthermore, matrix S := BA−1BT is also positive definite and it holds

〈Sq, q〉 � 〈Mpq, q〉
(ν + α+ ‖w‖L∞(ΓN) + ‖divw‖L∞(Ω))(1 + C2

A)
∀ q ∈ Rm.

Proof. Applying (3.8) and (3.9) in (3.7), we deduce

〈Av, v〉 ≥ α‖vh‖2 + ν‖∇vh‖2 − Cw

2

∫
ΓN

|vh|2 ds− 1

2
‖divw‖L∞(Ω)‖vh‖2

≥ α‖vh‖2 + ν‖∇vh‖2 − Cw

2
min{C0‖∇vh‖2, Ctrh

−1
min‖vh‖2}

− 1

2
‖divw‖L∞(Ω)‖vh‖2.

(3.13)
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To ensure the right-hand side is positive, we assume conditions (3.11) on problem
parameters and coefficients. Employing conditions (3.11) in (3.13), we deduce

(3.14) 〈Av, v〉 ≥ 1

4

(
α‖vh‖2 + ν‖∇vh‖2

)
=

1

4
(α〈Mv, v〉 + ν〈Kv, v〉 ) ∀ v ∈ Rn .

Further, we estimate

CA := ‖A− 1
2

S ANA
− 1

2

S ‖ = max{|λ| : λ ∈ sp(A
− 1

2

S ANA
− 1

2

S )}
= max{|λ| : λ ∈ sp(A−1

S AN)}
≤ ‖A−1

S AN‖∗,
(3.15)

and for ‖ · ‖∗ we choose a matrix norm induced by the vector norm 〈(αM + νK)·, ·〉 1
2 .

For a given v ∈ Rn and u = A−1
S AN v consider their FE counterparts vh,uh ∈ Vh.

Then ASu = AN v can be written in a FE form as

(3.16) ν(∇uh,∇ϕh) + α(uh,ϕh) +
1

2

∫
ΓN

(w · n)uh · ϕh ds+
1

2
((divw)uh,ϕh)

=
1

2
[(w·∇vh,ϕh)− (w·∇ϕh,vh)] ∀ϕh ∈ Vh.

We set ϕh = uh. For the left-hand side of (3.16) the lower bound (3.14) holds. To
estimate the right-hand side, we apply the Cauchy–Schwarz inequality

(3.17) [(w·∇vh,ϕh)− (w·∇ϕh,vh)] ≤ ‖w‖L∞(Ω)(‖uh‖‖∇vh‖+ ‖∇uh‖‖vh‖).

Further we estimate terms on the right-hand side by employing Young’s, Friedrichs,
and FE inverse inequalities. Thus, one can estimate the product ‖uh‖‖∇vh‖ in three
different ways:

‖w‖L∞(Ω)‖uh‖‖∇vh‖ ≤ 1

16
α‖uh‖2 + 4‖w‖L∞(Ω)

1

αν
(ν‖∇vh‖2),

‖w‖L∞(Ω)‖uh‖‖∇vh‖ ≤ 1

16
ν‖∇uh‖2 + 4‖w‖L∞(Ω)

C2
f

ν2
(ν‖∇vh‖2),

‖w‖L∞(Ω)‖uh‖‖∇vh‖ ≤ 1

16
α‖uh‖2 + 4‖w‖L∞(Ω)

C2
in

α2h2min

(α‖vh‖2).

Combining all three estimates gives

‖w‖L∞(Ω)‖∇vh‖‖uh‖ ≤ 1

16
(ν‖∇uh‖2 + α‖uh‖2)

+ 4‖w‖2L∞(Ω) min

{
1

αν
,
C2

f

ν2
,

C2
in

α2h2min

}
(ν‖∇vh‖2 + α‖vh‖2).

(3.18)

Using the same argument to treat the second term on the right-hand side of (3.17),
we arrive at

‖w‖L∞(Ω)‖∇uh‖‖vh‖ ≤ 1

16
(ν‖∇uh‖2 + α‖uh‖2)

+ 4‖w‖2L∞(Ω) min

{
1

αν
,

C2
in

α2h2min

,
C2

f

ν2

}
(ν‖∇vh‖2 + α‖vh‖2).

(3.19)
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For ϕh = uh, the left-hand side of (3.16) equals 〈Au, u〉 and due to (3.14) it is
estimated from below by ν‖∇uh‖2 + α‖uh‖2, while (3.17)–(3.19) give the upper
bound for the right-hand side of (3.16). Hence, we derive using min{a1, a2, a3} ≤
3(a−1

1 + a−1
2 + a−1

3 )−1, the estimate

ν‖∇uh‖2 + α‖uh‖2 �
(
1 +

‖w‖2L∞(Ω)

να+ ν2 + h2minα
2

)
(ν‖∇vh‖2 + α‖vh‖2).

Therefore, we proved

(3.20) CA := ‖A− 1
2

S ANA
− 1

2

S ‖ ≤ ‖A−1
S AN‖∗ �

(
1 +

‖w‖L∞(Ω)√
να+ ν + hminα

)
.

Denote c̃w := ‖w‖L∞(ΓN), ĉw = ‖divw‖L∞(Ω). To show the ellipticity estimate
for the Schur complement matrix, we note that (3.7), (3.8), (3.10), and the LBB
stability of the FE spaces yield the following relations:

〈BA−1
S BT q, q〉 = sup

v∈Rn

〈Bv, q〉2
〈ASv, v〉

≥ sup
vh∈Vh

(div vh, qh)
2

ν‖∇vh‖2 + α‖vh‖2 + C0c̃w‖∇vh‖2 + ĉw‖vh‖2

� sup
vh∈Vh

(div vh, qh)
2

(ν + α+ c̃w + ĉw)‖∇vh‖2 � ‖qh‖2
ν + α+ c̃w + ĉw

=
〈Mpq, q〉

ν + α+ c̃w + ĉw
.

(3.21)

With the help of the first identity from (3.5) and (3.21) we obtain

〈Sq, q〉 = 〈A−1BT q, BT q〉 = 〈(I − (A
− 1

2

S ANA
− 1

2

S )2)−1A
− 1

2

S BT q, A
− 1

2

S BT q〉

≥ 〈A− 1
2

S BT q, A
− 1

2

S BT q〉
1 + ‖(A− 1

2

S ANA
− 1

2

S )2‖
=

〈BA−1
S BT q, q〉

1 + ‖(A− 1
2

S AN A
− 1

2

S )2‖
� 1

(ν + α+ c̃w + ĉw)(1 + ‖(A− 1
2

S ANA
− 1

2

S )‖2)
〈Mpq, q〉.

(3.22)

Now we combine (3.22) and (3.20) to show the desired ellipticity estimate for S.
We are in position to discuss conditions (3.11), which guarantee the matrices A

and S to be positive definite and so the saddle-point matrix admits LU factorization
without pivoting. The first condition in (3.11) is effective only if ΓN �= ∅. Also if the
entire ΓN is outflow boundary then Cw = 0 and the condition is trivially satisfied.
Otherwise, either the Reynolds number should be sufficiently small (creeping flows)
or a Courant-type condition (Δt) ≤ c hmin should hold with a problem-dependent
constant c (we recall that α ≈ (Δt)−1). From the first look, the second condition in
(3.11) is not restrictive. For example, for P2-P1 Taylor–Hood elements and a second
order time discretization, the FE velocity gradient converges quadratically to the one
of true solution, and hence one may expect that ‖divw‖L∞(Ω) ≤ C̃(h2+(Δt)2). This
would make the left-hand side of the second condition small. On the other hand,
the constant C̃ is data dependent, and for ν small enough the constant can be large.
Fortunately, for any fixed unsteady problem one can choose such small Δt that the
second condition holds due to α ∼ (Δt)−1.
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4. A two-parameter threshold ILU factorization. In this section we pro-
ceed with incomplete LU factorizations of (1.3). A few remarks are in order.

Any threshold incomplete factorization can be written in the form A = LU − E,
with an error matrix E. How small the matrix E is ruled by a threshold parameter τ >
0. The error matrix E largely defines the quality of preconditioning; see, for example,
[21] for estimates on GMRES method convergence written in terms of ‖E‖ and subject
to a proper prescaling of A and the diagonalizability assumption. Furthermore, if A is
positive definite, then there exists such a small τ that LU is also positive definite and
so estimates from [16] can be applied to assess the numerical stability of the incomplete
factorization. For cA = λmin(AS), a sufficient condition is τ < cAn

−1. Although
in practice this estimate is often too pessimistic, for realistic τ and nonsymmetric
matrices, nonpositive or close to zero pivots may be encountered, and breakdown of an
algorithm may happen. A number of remedies have been proposed in the literature to
deal with the problem of breakdown. A concise review of these techniques and further
references can be found in [1]. Although most of the techniques were developed for
the symmetric positive definite case, some of them can be applied to nonsymmetric
matrices. These techniques are pivot modification, diagonal shifting, matrix scaling,
unknowns reordering, and the Ajiz–Jennings modification. Among them, we found
the matrix two-sided scaling to be the most important in our applications. We shall
review this technique later in this section. Now let us look at the situation with ILU
factorization for saddle-point matrices with positive definite (1,1)-block.

It was observed in [33, 45] for symmetric saddle-point systems that the block
factorization as in (3.1) can be used to construct an incomplete factorization. One

way to do this is first to compute an ILU factorization for the (1,1)-block, A ≈ L̃11Ũ11,

set Ũ12 = L̃−1
11 B

T and L̃21 = BŨ−1
11 , and define L̃22 and Ũ22 as incomplete factors for

the inexact Schur complement:

B(L̃11Ũ11)
−1BT + C ≈ L̃22Ũ22.

As we noted before, A > 0 implies L̃11Ũ11 > 0, at least for sufficiently small τ , and so
the inexact Schur complement is also positive definite. In the present paper, we apply
a global incomplete factorization of the matrix instead of the above blockwise factor-
ization. We also avoid pivoting, i.e., we preserve the ordering when velocity unknowns
are numbered before pressure unknowns, and we still observe stable factorizations.

Theorem 3.2 shows that for certain flow regimes the stability constant CA from
(3.12) may become large and the ellipticity constant cA approaches zero, which means
the nonsymmetric part of the matrix dominates over the symmetric one. Even for
advanced threshold ILU factorizations this drives the threshold parameter τ to be
smaller and hence increases the fill-in. Results of the next section demonstrate that
exactly this behavior of the algorithm is observed in numerical experiments. To ame-
liorate the performance of the preconditioning in such extreme situations, we consider
the two-parameter Tismenetsky–Kaporin variant of the threshold ILU factorization.
The factorization was introduced and first studied in [20, 38, 40] for the symmetric
positive definite case. Below we consider an extension of the Tismenetsky–Kaporin
factorization to the case of nonsymmetric and saddle-point matrices and give further
motivation for it.

Given a matrix A ∈ Rn×n, consider the factorization of the form

(4.1) A = LU + LRu +R�U − E,
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where Ru and R� are strictly upper and lower triangular matrices, while U and L
are upper and lower triangular matrices, respectively. Given two small parame-
ters τ1 and τ2, we shall assume that the off-diagonal elements of U and L are
either zero or have absolute values greater than τ1, while the absolute values of
R� and Ru entries are either zero or belong to (τ2, τ1]; and E is an error matrix
with entries of order O(τ2). We shall call (4.1) the ILU(τ1, τ2) factorization of
A. Of course, a generic ILU(τ) can be viewed as (4.1) with Ru = R� = 0 and
τ1 = τ2 = τ . The important improvement the two-parameter ILU factorization gives
over a generic ILU(τ) is that the fill-in of L and U is ruled by the first threshold pa-
rameter τ1, while the quality of the resulting preconditioner is mainly defined by τ2,
once τ21 � τ2 holds. Roughly speaking, taking τ2 = τ21 := τ2 one expects the fill-in of
ILU(τ1, τ2) to be similar to that of ILU(τ), while the convergence of the precon-
ditioned Krylov subspace method is better and asymptotically (for τ → 0) can be
comparable to the one with the ILU(τ2) preconditioner. This statement is made
more precise in [20] for symmetric positive definite matrices, where estimates on the
eigenvalues and K-condition number of L−1AU−1 were derived with LT = U and
RT

� = Ru. The price one pays is that computing L, U factors for ILU(τ1, τ2) is com-
putationally more costly than for ILU(τ1), since intermediate calculations involve the
entries of Ru. However, this factorization phase of ILU(τ1, τ2) is still less expensive
than that of ILU(τ2). Note that (4.1) can be also viewed as the incomplete ILU(τ2)
factorization of the matrix A with the implicitly added R�Ru matrix:

A+R�Ru = L̂Û − E,

and further filtering of factors on the level of τ1,

L̂ = L+R�, Û = U +Ru,

to get L and U . In the symmetric case, the (implicitly) added matrix R�Ru is positive
semidefinite making the ILU(τ1, τ2) factorization potentially more stable than ILU(τ2)
applied to A.

Not much analysis of the decomposition (4.1) is known for a general nonsymmetric
case. We note that the estimate (2.5) from [17] applied to the matrix

(L+R�)(U +Ru) = A+R�Ru + E

yields the low bound for the pivots of the (4.1) factorization

|LiiUii| ≥ min
v∈Rn

〈(A+ R�Ru + E)v, v〉
‖v‖2 ≥ cA − ‖R�Ru‖ − ‖E‖,

with the ellipticity constant cA and the norms ‖R�Ru‖, ‖E‖ proportional to τ21 and
τ2, respectively. Thus the stability of the system solution with matrices L and U is
ruled by the values of the second parameter and the square of the first parameter,
while the fill-in is defined by τ1 rather than τ21 . Using ILU(τ1, τ2) becomes important
for the efficiency of the ILU preconditioning, when the problem setup is such that the
estimates from Theorem 3.2 predict that the stability constant CA is large and cA is
small.

Similarly to the situation with ILU(τ) factorization, an ILU(τ1, τ2) factorization
for the saddle-point matrix A can be built based on two-parameter factorizations
(without pivoting) for the (1,1) block

(4.2) A = L1U1 + L1Ru1 +R�1U1 − E1
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and the inexact Schur complement matrix S̃ = C +B[(L1 +Rl1)(U1 +Ru1)]
−1BT ,

(4.3) S̃ = L2U2 + L2Ru2 +R�2U2 − E2.

For a matrix G ∈ Rn×m and real τ ≥ 0 denote {G}τ ∈ Rn×m with entries {G}τij = Gij

if |Gij | ≥ τ , and {G}τij = 0 otherwise; let [G]τ = G−{G}τ . Given (4.2) and (4.3) one
may check the following factorization for the saddle-point matrix A:

(4.4) A = LU + LRu +R�U − E
with sparse block factors L and U ,

L =

(
L1 0{

B(U1 +Ru1)
−1
}τ1

L2

)
, U =

(
U1

{
(L1 +Rl1)

−1BT
}τ1

0 −U2

)
,

strictly upper triangle matrices RT
� and Ru,

R� =

(
R�1 0[

B(U1 +Ru1)
−1
]τ1

R�2

)
, Ru =

(
Ru1

[
(L1 +Rl1)

−1BT
]τ1

0 −Ru2

)
,

and the error matrix

E =

(
E1 −R�1

[
(L1 +Rl1)

−1BT
]τ1

−[B(U1 +Ru1)
−1]τ1Ru1 −E2 − [B(U1 +Ru1)

−1]τ1
[
(L1 +Rl1)

−1BT
]τ1 ) .

If (4.2) and (4.3) are ILU(τ1, τ2) factorizations, then the formulas above show the
existence of a Tismenetsky–Kaporin–type incomplete factorization of (1.3), with the
error matrix having elements of order O(τ2 + τ21 ). In practice, we do not exploit the

block form and neither matrix S̃ nor factorization (4.3) are generated explicitly.

4.1. The algorithm. In what follows, the algorithm makes no specific use of the
block structure of the matrixA, but can formally be applied to a generic nonsymmetric
A ∈ Rn×n (for a general matrix it can fail, of course). Thus, for the sake of notation,
we denote by A below some given nonsymmetric square matrix, rather than the (1,1)-
block of A, and n = dim(A).

4.1.1. Two-sided scaling of A. The derivation of the ILU(τ1,τ2) precondi-
tioner in the SPD case assumes such a scaling of the matrix and unknowns that all
diagonal elements are equal to 1; see [20]. Clearly, in a nonsymmetric case such scaling
is not always possible. However, for the performance of the method, we found it very
important to rescale a given matrix. Thus, we look for scaling vectors 
, r ∈ Rn such
that the matrix A′ = diag(
)Adiag(r) has nearly balanced Euclidean norms of rows
and columns. To accomplish this task, we apply the Sinkhorn algorithm [36] to the
nonnegative matrix F = [a2kj ]

n
kj=1. The Sinkhorn method is an iterative algorithm.

One iteration of the algorithm reads

diag(r(k+1)) = diag(FT 
(k))−1,

diag(
(k+1)) = diag(Fr(k+1))−1.

We use the starting vector 
(0) of all ones. In all experiments in the next sections we
performed 5 iterations to find the scaling vectors, before any incomplete factorization
was computed. The importance of a proper two-sided scaling for a quality of ILU
factorizations for nonsymmetric matrices is discussed in [21]; see also [9, 22, 25, 26].
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If an incomplete factorization is computed for the scaled matrix A′ so that L′U ′ ≈
A′, the triangular factors for the original matrix have to be rescaled:

LU ≈ A, L = (diag(
))−1L′, U = U ′(diag(r))−1.

In what follows, we will refer to matrices diag(
) and diag(r) as the left and right
scaling matrices DL and DR, respectively.

4.1.2. Rowwise ILU(τ1,τ2) factorization. In general, a two-parameter thresh-
old ILU factorization algorithm we are using is similar to that of RIC2 from [20]. The
main difference with RIC2 is the extension of the method to nonsymmetric matri-
ces. The algorithm uses a rowwise data structure for both L and U factors; it was
suggested and implemented by Sergei Goreinov in the open source software [23, 24].

Assume that the input matrix A ∈ Rn×n to be factorized is given in the com-
pressed sparse row (CSR) format. Dropping for a moment the error matrix, consider
the (i+ 1)th step of the rowwise ILU(τ1,τ2) algorithm in the block-matrix form⎡⎣Ai ai Ãi

âi αi ãi

∗ ∗ ∗

⎤⎦ =

⎡⎣Li

li λi

∗ ∗ ∗

⎤⎦⎡⎣U i ui Ũ i

μi ũi

∗

⎤⎦
+

⎡⎣Li

li λi

∗ ∗ ∗

⎤⎦⎡⎣Ri
u ri R̃i

0 r̃i

∗

⎤⎦+

⎡⎣Ri
�

r̂i 0
∗ ∗ ∗

⎤⎦⎡⎣U i ui Ũ i

μi ũi

∗

⎤⎦ .
Here we use the convention to denote matrices and vectors (row or column) by Latin
uppercase (capitals) and lowercase letters, respectively, and scalars by Greek symbols.
All objects in the first row are known from the previous step, while li, λi, μi, ũi have
to be computed. The second row gives the set of equations

âi = (li + r̂i)U i + liRi
u,(4.5)

αi = (li + r̂i)ui + liri + λiμi,(4.6)

ãi = (li + r̂i)Ũ i + liR̃i
u + λi(ũi + r̃i).(4.7)

Once one defines a rule for splitting a row vector z = li+ r̂i ∈ Ri into two structurally
orthogonal parts li and r̂i (i.e., lik r̂

i
k = 0 for k = 1, . . . , i), (4.6) is uniquely solvable

for li and r̂i. The ILU(τ1,0) method imposes the splitting lik = zk if |zk| > τ1, and
lik = 0 otherwise. Recalling that Ri

u is strictly upper triangle, the vectors li and r̂i can
be computed as is shown in steps (3)–(4) of the ILU(τ1,τ2) algorithm below, where
vector z is a part of a full size accumulator vector v ∈ Rn.

After the vectors li and r̂i are found, μi, ũi can be computed from (4.6), (4.7)
up to the scaling of λi (ũi is determined from the vector z̃ = ũi + r̃i using the same
splitting rule). In our implementation, we set λi = ‖ũi‖�∞ . Finally, the entries of
the factors not exceeding τ2 are dropped out and ignored in computations as in the
standard threshold ILU strategy [31]. Pivots with absolute values smaller than τ2 are
modified. The pseudocode of the resulting method is given below.

4.1.3. ILU(τ1, τ2) algorithm pseudocode. Input: a sparse nonsymmetric
matrix A, left and right scaling diagonal matrices DL and DR (see section 4.1.1),
threshold parameters 0 < τ2 ≤ τ1 < 1. For a matrix G, P (G) denotes the subset
of indexes (i, j) such that Gij = 0. Since R� is not computed in the course of the
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factorization, we use below the notation R for the upper triangular error factor Ru;
v ∈ Rn is an auxiliary vector initially set equal to 0.

(1) Main loop by rows of A to compute the rows of L and U :
for i = 1, . . . , n:

(2) Initialize the row accumulator vector v by the ith row of the balanced matrix A:
for j = 1, . . . , n and if (i, j) /∈ P (A):

vj := (DL)iiaij(DR)jj
end for

(3) Loop over all already computed rows of U :
for k = 1, . . . , i− 1 and if vk �= 0:

(4) Update the accumulator vector:
vk := vk/Ukk

if |vk| > τ2 then
for j = k + 1, . . . , n and if (k, j) /∈ P (U):

vj := vj − vkUkj

end for
end if
if |vk| > τ1 then

for j = k + 1, . . . , n and if (k, j) /∈ P (R):
vj := vj − vkRkj

end for
end if

end for
(5) Rescale the ith row of U :

λi := max
k=i,...,n

|vk|
if λi < τ2 then

λi := τ2
end if
for j = i, . . . , n and if vj �= 0:

vj := vj/λi

end for
(6) Compute the ith row of L:

Lii = λi

for j = 1, . . . , i− 1 and if |vj | > τ1:
Lij := vj

end for
(7) Compute the ith row of U and R:

if |vi| < τ2 then
vi := τ2 · sign(vi)

end if
Uii = vi
for j = i+ 1, . . . , n and if vj �= 0:

if |vj | > τ1 then
Uij := vj

else if |vj | > τ2 then
Rij := vj

end if
end for

(8) Clear nonzero elements of the row accumulator v:
for j = 1, . . . , n and if vj �= 0:

vj := 0
end for

end for
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(9) Perform the final rescaling of the incomplete factors L and U :

for i = 1, . . . , n:

for j = 1, . . . , i and if (i, j) /∈ P (L):

Lij := Lij/(DL)ii
end for

for j = i, . . . , n and if (i, j) /∈ P (U):

Uij := Uij/(DR)jj
end for

end for

Note that the rowwise variant of the two-parameter ILU factorization drops off
elements of matrix R� after processing the ith row of A. This essentially saves the
required working memory.

If an available working memory limit is exhausted in the course of computations,
one can discard those entries of Ru which are never used later in computations. There-
fore, the factorization can be continued with (partially) compressed factors. In the
present implementation of ILU(τ1,τ2), the sparsity of matrices is exploited as follows:
L and U are stored in the CSR format using separate integer pointers. All the inner
loops are made along the sparsity structure indices. Other loops over row accumulator
vector v are based on a linked-list data structure.

We remark that ILU(τ1,τ2) with τ1 = τ2 is similar to the ILUT(p,τ) dual pa-
rameter incomplete factorization [31] with p = n (all elements passing the threshold
criterion are kept in the factors). If τ1 = τ2 and no small pivots modification is
done, the only differences between the algorithms are the scaling of pivots and a
row-dependent scaling of threshold values used in ILUT.

5. Numerical results. In this section, we show the results of several numerical
experiments with different values of fluid, discretization, and threshold parameters.
We look for optimal values of ILU thresholds and how the preconditioner performance
is sensitive to deviations of τ ’s from these optimal values. The stopping criterion in
all experiments is the decrease of the residual by 10 orders of magnitude. Three flow
problems of increasing computational complexity are considered in this section.

5.1. Pipe flow. First, we consider a flow in a cylinder of circular cross sec-
tion. The length of the cylinder is 2, the diameter is 1, w is the Poiseuille flow with
maxΓ0 |w| = 1. We prescribe zero no-slip conditions on the lateral boundary of the
cylinder. The parabolic inflow profile is prescribed on the inlet of the cylinder and
−ν(∇u) · n+ pn = 0 on the outlet.

To discretize the problem, we build several tetrahedral subdivisions of Ω (the
lateral boundary is approximated by a triangulated surface). First, three increasingly
fine meshes with regular tetrahadral elements are constructed. The corresponding
number of degrees of freedom and average number of nonzero entries per row in the
saddle-point matrix from (1.3) are the following: d.o.f. = 7330, nz(A)/n = 19.5
(mesh 1); d.o.f. = 42066, nz(A)/n = 27.3 (mesh 2); d.o.f. = 296715, nz(A)/n = 34.1
(mesh 3). Further, two more meshes are built, each of these two contains 3 layers of
anisotropic elements aligned along the lateral boundary. These two meshes mimic the
situation when one has to adapt a mesh to a boundary layer. The data for these two
meshes are given by d.o.f. = 501639, nz(A)/n = 37.0, anisotropy ratio is equal to 5
(mesh 4); d.o.f. = 528598, nz(A)/n = 37.1, anisotropy ratio is equal to 10 (mesh 5).
The latter mesh is illustrated in Figure 1.

In all experiments in this section, the resulting linear algebraic systems are solved
by the preconditioned BiCGstab method with either ILU(τ) or ILU(τ1, τ2)
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Fig. 1. Cylindrical domain with mesh 5 is shown on the left. The right picture zooms into the
mesh near the lateral boundary to show anisotropic elemets, otherwise not seen on the left picture.

Table 1

The dependence of ILU(τ) performance on the choice of threshold parameter for the pipe flow;
results are shown for ν = 0.001, α = 1, meshes 3 and 5.

τ fillLU #it Tbuild Tit TCPU fillLU #it Tbuild Tit TCPU

Mesh 3 Mesh 5
0.100 0.387 135 1.2 13.5 14.7
0.080 0.497 94 1.5 10.2 11.7 0.385 129 2.3 23.3 25.6
0.070 0.571 76 1.7 8.7 10.3 0.434 115 2.5 21.6 24.1
0.060 0.667 60 1.9 7.3 9.2 0.519 69 2.9 13.7 16.6
0.050 0.793 52 2.3 6.8 9.1 0.640 62 3.4 13.2 16.6
0.040 0.969 49 2.9 7.0 9.9 0.798 52 4.2 12.1 16.4
0.030 1.239 44 3.9 7.2 11.1 1.003 43 5.4 11.2 16.6
0.020 1.722 30 5.9 5.9 11.8 1.360 31 7.7 9.5 17.3
0.010 2.917 22 12.3 6.1 18.4 2.209 24 15.0 10.0 25.0
0.007 3.754 18 17.8 5.9 23.8 2.766 18 21.0 8.7 29.7
0.005 4.700 16 25.1 6.2 31.3 3.384 16 28.8 8.9 37.7
0.003 6.472 13 41.6 6.3 47.9 4.520 12 46.5 8.2 54.7
0.002 8.207 11 61.3 6.4 67.7 5.612 12 67.4 9.6 77.0
0.001 11.954 9 115.5 7.0 122.5 8.007 10 125.4 10.6 135.9

preconditioners, with zero initial guess. The ILU(τ1,τ2) preconditioner is computed
by the algorithm from section 4.1.3, and ILU(τ):=ILU(τ ,τ). All presented results are
computed with 5 iterations to balance the matrix, as described in section 4.1.1. Us-
ing only 1 iteration we experienced slightly worse performance of the preconditioners.
However, without the preprocessing both ILU(τ) and ILU(τ1, τ2) fail for most of the
examples treated in the numerical section.

In our first series of experiments, we study the τ -dependence of the ILU(τ) precon-
ditioner performance. The computations were run on the finest mesh 3 for ν = 0.001
and α = 1. The results are presented in Table 1. Tbuild and Tit show CPU time spent
for building ILU factorization (including the two-sided scaling) and iterations, respec-
tively; TCPU = Tbuild + Tit, and #it is the number of BiCGstab iterations needed to
satisfy the stoping criterion. The ratio of fill-in is computed from

fillLU = (nz(L) + nz(U))/ nz(A), nz(A) =
∑
ij

sign|Aij |.

Note that fillLU ≤ 1 means that the number of nonzero elements in factors is less
than in ILU(0), the commonly used ILU factorization by position. For smaller values
of τ we observe the increase of fill-in and Tbuild, but the decrease of iteration numbers



A2188 I. N. KONSHIN, M. A. OLSHANSKII, Y. V. VASSILEVSKI

Fig. 2. The dependence of the optimal values of the threshold parameter τ in ILU(τ) on the
viscosity ν (left) and α = 1

Δt
(right). Both plots also show the bounds on τ where the efficiency of

the preconditioner is at least 70% of the optimal case.

and Tit; both facts are expected. We repeated the same experiments with mesh 5,
which contains anisotropic elements. The results are shown in Table 1. We observe
that the performance of the preconditioner does not change significantly, the optimal
value of τ was found to be about the same. We run the same set of experiments with
meshes 1, 2, and 4, and observed that the optimal values of all τ ’s are almost grid
independent.

Further, we study the dependence of optimal threshold parameters with respect
to the variation of ν and α. The results are presented in Figure 2: on the left plot
we vary ν for fixed α = 10 and given mesh 3, while on the right plot we vary α for
fixed ν = 0.01 and the same mesh. Optimal τ ’s were found with respect to total
computational time, i.e., TCPU = Tbuild + Tit. We also compute a range of “quasi-
optimal” τ ’s, which is defined as the set of all parameters τ such that the efficiency
of ILU(τ) decreases at most by 30% compared to the case of the optimal value. From
the plots we see that the optimal threshold values do depend on ν and α. However,
the range of acceptable values is rather wide, though it decreases for the diffusion
dominated case. For further experiments, we choose a quasi-optimal value τ = 0.03,
independent of parameters. Table 2 collects the results of experiments with this quasi-
optimal threshold value, showing the rate of fill-in, the number of iterations, and TCPU

for all five meshes, different ν’s, and α’s. One observes convergent iterations for all
meshes and parameters, with a certain loss of performance for the strongly convection
dominated Oseen problem discretized on strongly anisotropic mesh. It is interesting
that a moderately convection dominated problem, i.e., ν ∈ {0.1; 0.01; 0.001}, appears
to be more amenable to efficient ILU preconditioning than a diffusion dominated case.

We repeat the same set of experiments, but now with the two-parameter ILU
preconditioner. We set τ1 = 0.03 (equal to the quasi-optimal value in the ILU(τ)
preconditioner) and τ2 = c0τ

2
1 , with c0 = 7. We note that in the symmetric positive

definite case, the author of [20] recommends an ad hoc choice of c0 = 10, while we
found some decreasing of c0 beneficial for the ILU(τ1,τ2) performance. The results
are reported in Table 3 and they appear to be largely comparable to those obtained
with ILU(τ).

5.2. The Ethier–Steinman problem. Next we consider the well-known Ethier–
Steinman solution for the Navier–Stokes equations from [14]. For chosen parameters
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Table 2

The performance of the one-parameter ILU(τ = 0.03) preconditioner for the pipe flow test case.
The results are shown for various values of viscosity ν, α, and different meshes.

ν: 1 10−1 10−2 10−3 10−4

Mesh α: 10 100 10 100 10 100 10 100 10 100
fillLU

1 0.88 0.73 0.74 0.80 0.80 1.06 1.06 1.18 1.17 1.20
2 0.89 0.78 0.78 0.62 0.72 0.94 1.26 1.19 1.71 1.24
3 0.89 0.85 0.85 0.66 0.72 0.72 1.24 1.08 2.86 1.25
4 0.89 0.86 0.86 0.74 0.77 0.71 1.00 0.92 1.83 1.14
5 0.83 0.81 0.80 0.70 0.73 0.73 1.00 0.99 1.91 1.02

#it
1 12 10 9 12 11 14 13 15 15 15
2 48 21 19 19 19 25 23 26 27 26
3 170 61 59 34 32 38 44 42 79 52
4 169 62 56 34 31 43 41 67 87 73
5 177 67 59 36 32 50 43 59 99 136

TCPU

1 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.06
2 0.82 0.44 0.42 0.38 0.42 0.58 0.71 0.68 1.00 0.70
3 25.1 10.2 10.0 5.86 5.91 7.15 11.0 9.33 33.2 11.8
4 43.8 18.2 16.8 10.7 10.3 13.0 15.6 21.0 44.2 25.1
5 51.4 19.6 17.7 11.4 10.7 15.3 16.9 20.5 51.8 41.9

Table 3

The performance of the two-parameter ILU(τ1 = 0.03, τ2 = 7τ21 ) preconditioner for the pipe
flow test case. The results are shown for various values of viscosity ν, α, and different meshes.

ν: 1 10−1 10−2 10−3 10−4

Mesh α: 10 100 10 100 10 100 10 100 10 100
fillLU

1 0.91 0.73 0.74 0.76 0.77 0.96 1.01 1.07 1.11 1.09
2 0.93 0.79 0.80 0.62 0.72 0.84 1.21 1.03 1.65 1.09
3 0.93 0.88 0.88 0.67 0.73 0.70 1.20 0.95 2.59 1.10
4 0.91 0.88 0.87 0.74 0.77 0.69 0.97 0.84 1.69 1.01
5 0.86 0.83 0.83 0.71 0.74 0.71 0.97 0.88 1.74 0.94

#it
1 10 9 7 11 9 12 11 15 12 13
2 36 19 16 15 14 20 20 20 22 25
3 157 50 42 30 24 35 31 36 47 39
4 171 50 44 32 24 35 30 51 54 63
5 127 55 42 29 22 36 32 53 45 83

TCPU

1 0.06 0.05 0.05 0.06 0.06 0.08 0.10 0.10 0.11 0.09
2 0.95 0.62 0.58 0.49 0.59 0.81 1.39 0.99 2.11 1.08
3 26.9 11.7 10.7 7.21 7.27 8.75 17.9 12.7 61.1 15.0
4 49.5 20.0 18.6 13.5 12.5 14.4 23.0 22.7 68.6 29.5
5 39.7 21.5 18.3 13.1 12.2 15.5 24.2 24.3 68.3 34.3

a, d, and viscosity ν, the exact solution is given in [−1, 1]3 by

u1 = −a (eax sin(ay + dz) + eaz cos(ax+ dy)) e−νd2t,

u2 = −a (eay sin(az + dx) + eax cos(ay + dz)) e−νd2t,

u3 = −a (eaz sin(ax+ dy) + eay cos(az + dx)) e−νd2t,
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Fig. 3. Dependence of ILU(τ) on the threshold parameter τ for the Ethier–Steinman test case;
ν = 0.01, α = 10.

and

p = −a
2

2
(e2ax + e2ay + e2az + 2 sin(ax+ dy) cos(az + dx)ea(y+z)

+2 sin(ay + dz) cos(ax + dy)ea(z+x)

+2 sin(az + dx) cos(ay + dz)ea(x+y))e−2νd2t.

In our experiments we set a = π/4, d = π/2, and vary ν. This problem was devel-
oped as a 3D analog to the Taylor vortex problem, for the purpose of benchmarking.
Although unlikely to be physically realized, it is a good test problem because it has
an analytically known solution, but the flow has no principle direction and has a
nontrivial vortical structure.

For the purpose of testing the algebraic solver, we do not perform time stepping,
but linearize the Navier–Stokes equation over the analytical solution at t = 0.1. For
the discretization, a regular tetrahedrization of the cube [−1, 1]3 is built. The coarsest
mesh is uniformly refined three times. This results in four gradually refined meshes.
The corresponding number of degrees of freedom and average number of nonzero
entries per row in the saddle-point matrix from (1.3) were the following: d.o.f. = 2251,
nz(A)/n = 17.3 (mesh 1); d.o.f. = 12420, nz(A)/n = 25.8 (mesh 2); d.o.f. = 75660,
nz(A)/n = 32.5 (mesh 3); d.o.f. = 522220, nz(A)/n = 37.5 (mesh 4). Similarly to
the previous test, the resulting linear algebraic system was solved by the BiCGstab
method with either ILU(τ1) or ILU(τ1, τ2) preconditioners and zero initial guess.

Figure 3 demonstrates the dependence of ILU(τ) performance with respect to
the choice of the threshold parameter τ . The experiments were run with ν = 0.01,
α = 10, and for all four meshes. The vertical axis shows the total CPU time per
degree of freedom. We observe a definite dependence of optimal τ on the mesh size,
but the range of quasi-optimal parameters is wide. We set τ = 0.02 and run the
computation with ILU(τ) and ILU(τ, 7τ2) for different values of viscosity coefficient
ν ∈ {1, 0.1, 0.01, 0.001} and parameter α ∈ {1, 10, 100}. The results for two fine
meshes are collected in Table 4. From the results in this table, we see that in the
range of moderate viscosity values, both preconditioners demonstrate very similar
behavior with ILU(τ) being somewhat cheaper during the setup phase. For the dif-
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Table 4

The performance of the ILU(τ = 0.02) and ILU(τ1 = 0.02, τ2 = 7τ21 ) preconditioners for the
Ethier–Steinman flow. The results are shown for various values of ν, α, and two different meshes.

ν: 1 10−1 10−2 10−3

Mesh α: 1 10 100 1 10 100 1 10 100 1 10 100 ILU
fillLU

3 1.22 1.20 1.07 1.19 1.08 0.81 1.97 1.47 1.21 79.96 5.83 1.78 ILU(τ)
3 1.21 1.19 1.07 1.20 1.08 0.81 1.98 1.46 1.12 20.62 4.93 1.64 ILU(τ1, τ2)
4 1.22 1.22 1.17 1.21 1.17 0.93 1.48 1.27 0.97 n/c 6.53 1.89 ILU(τ)
4 1.20 1.20 1.16 1.20 1.16 0.93 1.53 1.30 0.96 9.28 5.33 1.80 ILU(τ1, τ2)

#it(BCGstab)
3 72 46 18 29 14 17 12 15 24 n/c 38 28 ILU(τ)
3 58 37 16 24 14 13 12 14 15 58 19 17 ILU(τ1, τ2)
4 337 296 50 119 38 26 27 22 31 n/c 83 44 ILU(τ)
4 201 158 36 95 31 26 22 24 26 47 38 31 ILU(τ1, τ2)

TCPU(BCGstab)
3 4.4 3.4 1.5 2.2 1.4 1.3 2.1 1.7 1.8 n/c 13.6 2.9 ILU(τ)
3 4.2 3.5 2.8 3.3 2.7 2.0 7.6 5.2 3.4 492 46.1 6.2 ILU(τ1, τ2)
4 170.1 149.7 31.0 58.5 25.7 17.5 20.8 16.7 16.8 n/c 234.1 38.4 ILU(τ)
4 93.8 96.9 35.7 69.9 35.1 26.8 51.2 42.8 35.1 2174 735 89.5 ILU(τ1, τ2)

#it(GMRES(30))
3 67 54 29 41 25 26 22 26 34 n/c 55 44 ILU(τ)
3 56 47 27 36 24 21 20 23 26 95 34 28 ILU(τ1, τ2)
4 288 218 85 131 71 44 47 40 54 n/c 128 64 ILU(τ)
4 157 126 63 98 57 41 41 38 41 62 58 46 ILU(τ1, τ2)

TCPU(GMRES(30))
3 2.4 2.1 1.3 1.7 1.2 1.0 2.2 1.8 1.7 n/c 12.6 2.7 ILU(τ)
3 3.4 3.1 2.3 2.9 2.3 1.7 6.6 4.5 3.2 472.9 41.7 5.6 ILU(τ1, τ2)
4 69.9 54.9 25.5 36.1 22.6 14.4 22.0 18.1 17.7 n/c 216.8 34.1 ILU(τ)
4 56.5 49.7 35.0 44.0 33.9 24.5 49.9 40.0 29.3 2207 668.5 81.4 ILU(τ1, τ2)

fusion dominated case (ν = 1, α = 1), when the matrix becomes more symmetric,
the two-parameter preconditioning wins in terms of iteration number and total CPU
time. The convection dominated case appears to be the hardest. Here ILU(τ) fails
for α = 1, while the usage of the two-parameter preconditioner leads to a convergent
method. We repeated the same set of experiments with the restarted minimal residual
method, GMRES(30). The performance of the solver turned out to be very similar
to the preconditioned BiCGstab method, see Table 4.

Finally we have a closer look at the hardest case from Table 4, i.e., ν = 0.001
and α = 1, and experiment with different values of the threshold parameters. Ta-
ble 5 shows the results of this experiment for ν = 0.001 and α = 1 on a fixed given
mesh 3. We see that similar to the pipe flow case, the optimal parameter for ILU(τ)
decreases. Interestingly enough, the decrease of ν and α by 10 times resulted in the
10 times decrease of τopt, which is consistent with the ellipticity bound on matrix
A in Theorem 3.2. Also a “comfortable” zone around τopt shrinks making an over-
shoot in choosing the quasi-optimal τ easily possible. For this convection dominated
problem, one clearly benefits from using the two-parameter ILU preconditioner. For
two-parameter ILU, we fixed τ1 = 0.02 and vary the scaling factor c0 in τ2 = c0τ

2
1 .

The optimal c0 = 8 is close to c0 = 7 we found suitable in the case of pipe flow.
Overall, the two-parameter ILU factorization leads to a more efficient preconditioner
in terms of memory usage (fill-in) and iteration counts, but with a more expensive
set-up stage, compared to the standard ILU(τ).
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Table 5

The performance of ILU(τ) and ILU(τ, c0τ2) depending on the choice of threshold parameters
for the Ethier–Steinman flow; results are shown for ν = 0.001, α = 1, mesh 3.

τ fillLU #it TCPU τ c0 fillLU #it TCPU

ILU(τ) ILU(τ, c0τ2)
0.0065 76.041 n/c
0.0060 76.816 107 656.8 0.02 12.5 27.239 n/c
0.0055 78.068 55 632.5 0.02 10 23.764 553 570.7
0.0050 79.769 34 655.2 0.02 9 22.609 145 450.8
0.0045 82.126 26 676.0 0.02 8 21.537 86 438.2
0.0040 85.046 18 724.1 0.02 7.5 21.084 73 439.7
0.0030 93.718 12 868.7 0.02 7 20.616 58 440.1
0.0020 108.269 8 1135.7 0.02 6 19.963 50 448.8
0.0015 119.858 7 1383.4 0.02 5 18.967 45 470.1
0.0010 137.594 5 1781.1 0.02 4 18.108 39 508.4

Fig. 4. Right coronary artery test case: The top-left plot shows the velocity waveform on the
inflow, the top-right plot shows the number of BiCGStab iterations, the bottom-left plot shows the
fill-in ratio, and the bottom-right plot shows linear system solution CPU times. All shown data are
functions of time.

5.3. Flow in a right coronary artery. Finally, we study the performance of
the ILU preconditioner for a model haemodynamic problem of blood flow in a right
coronary artery. The geometry of the flow domain was recovered from a real patient
coronary CT angiography, the ANI3D package [24] was used to generate the tetra-
hedral mesh (see Figure 5), and to build the FE systems (1.3). The diameter of the
inlet cross section is about 0.27 cm and the whole domain can be embedded in a par-
allelogram with sides 6.5 cm× 6.8 cm× 5 cm. The mesh consists of 120 191 tetrahedra
leading to the discrete Navier–Stokes system with 623 883 unknowns. Other model
parameters are ν = 0.04 cm2/s, ρ = 1 g/cm, one cardiac cycle period was 0.735 s. The
inlet velocity waveform is shown in Figure 4 (top left); it was suggested in [19] on
the basis of clinical measurements. This waveform was used to define the flow rate
through the inflow cross section, while for the inflow velocity profile we prescribed the
Poiseuille flow. The Neumann boundary condition −ν(∇u) ·n+ pn = 0 was imposed
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on all outflow boundaries. No elasticity model was used for the vessel walls, i.e., the
walls were treated as rigid.

The Navier–Stokes system (1.1) was integrated in time using a semi-implicit sec-
ond order method with Δt = 0.005. The Oseen problem (1.2) was solved on every time
step with the preconditioned BiCGstab method. The solution from the previous time
step was used as the initial guess. For the preconditioner we used the two-parameter
ILU factorization with the choice of parameters τ1 = 0.03, τ2 = 7τ21 . Recall that
these are quasi-optimal parameters for pipe flows from section 5.1. This choice of the
preconditioner and parameters results in stable computations over the whole cardiac
cycle. The preconditioner performance data are shown in Figure 4. It is interesting
to note that the graph of the fill-in rate for the LU-factors repeats the waveform of
the inflow velocity remarkably well. Thanks to this adaptive feature of the threshold
factorization, the variations of the iteration numbers and computational times per
linear solve are rather modest; see the right plots in Figure 4. The computed solution
was physiologically relevant; it is illustrated in Figure 5.

6. Closing remarks and conclusions. In this paper, we studied threshold ILU
preconditioners for the discrete linearized Navier–Stokes system. Incomplete element-
wise factorization preconditioners have a clear advantage of being rather insensitive
to several factors, such as a choice of discretization, boundary conditions for gov-
erning PDEs, domain geometry, and flow directions, which otherwise influence the
performance of many other algebraic solvers for the fluid dynamics problem. Further-
more, the presented method does not need a choice of subsolvers or inner iterations
in contrast to many block preconditioners. It is well known that for discrete elliptic
problems, ILU preconditioners do not scale optimally with respect to the number of
unknowns. We observed this nonoptimality in our numerical experiments as well.
However, in numerical experiments this mesh dependence was more pronounced for
diffusion dominated flows and less evident when convection plays an important role.
For 3D problems, when the number of grid refinement levels is not large, such a depen-
dence can be an acceptable price for other robustness properties of the preconditioner.

Small values of viscosity parameters cause problems for most, if not all, known
preconditioners for (1.3). Our results show that the threshold ILU is not an excep-
tion. At the same time, we found that the performance range with respect to ν of
ILU(τ) and, especially, of ILU(τ1, τ2) is rather impressive, and likely covers most lam-
inar flows. Introducing subgrid models for higher Re numbers (e.g., turbulent) flows
changes the discrete system and, since such models are commonly dissipative, this
improves algebraic properties of the discrete system and should make the presented
preconditioning also feasible. We observed such an improvement if SUPG stabiliza-
tion is added to the FE formulation of the Ethier–Steinman problem for ν = 10−3,
but these extra results are not included in the report.

Incomplete threshold factorization is not a black-box method. A user should
make at least a choice of threshold parameter(s), and many techniques have been
suggested in the literature to improve the performance of ILU preconditioners. For
fluid flows treated in this paper, we found that natural u-p ordering of unknowns
and matrix two-sided scaling is sufficient for numerical stability. Further performance
improvements by using matrix-band diminishing or streamwise (for transport domi-
nated problems) reordering of velocity unknowns, can be possible. Although optimal
threshold parameters appear to be flow dependent, quasi-optimal τ ’s can be chosen
and successfully used for a wide range of flow and discretization parameters.
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Fig. 5. Right coronary artery: Top picture shows selected steamlines colored by the velocity
absolute value at time 0.4 s; middle picture shows the transmural pressure distribution at time 0.4 s;
bottom picture illustrates the grid for this test case.
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We considered a Tismenetsky–Kaporin-type incomplete two-parameter factoriza-
tion for nonsymmetric matrices and tested it for matrices arising in computational
fluid dynamics. While for modest values of ν (leading to a parity between convection
and diffusion terms) the performance of ILU(τ1,τ2) was similar to that of ILU(τ), for
larger and smaller ν’s ILU(τ1,τ2) was found to provide a more efficient preconditioner.
It was observed that the ILU(τ1, τ2) preconditioner has a low fill-in and leads to faster
convergent iterations for the expense of a more time consuming set-up phase. These
properties may make it an ideal choice for time-dependent computations, when one
can reuse a preconditioner over several time steps.

A numerical analysis of incomplete factorizations for nonsymmetric matrices is
still limited. This paper proves numerical stability bounds for the exact LU factor-
ization of nonsymmetric saddle-point matrices. We estimated the dependence of the
constants in these bounds on the flow problem parameters. This might give some
insight into the performance of incomplete factorizations applied to flow problems.

The two-parameter ILU preconditioner was applied to simulate a blood flow in
a right coronary artery reconstructed from a real patient coronary CT angiography.
We found the performance of the preconditioner satisfactory.
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