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SUMMARY

A practical stopping criterion for inner conjugate gradient iterations in the truncated Newton type
unconstrained optimization method is proposed. Numerical results are given for a family of large-
scale geometrical optimization problems. The comparison with the standard residual norm stopping rule
demonstrates an essential gain in e�ciency. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we will construct a quasi-optimum termination rule for inner linear precon-
ditioned conjugate gradient (PCG) iterations [1] used within a truncated Newton non-linear
solver [2].
The problem of non-linear minimization is formulated as follows:

u∗= argmin
u∈Rn

’(u)

where the functional ’ is assumed to be su�ciently smooth.
Such settings may arise, for instance, in variational formulations of mesh shape-quality

improvement problems. In Reference [3], several families of optimization methods are com-
pared on a rather simple mesh improvement problem, and the conclusion is drawn that the
truncated Newton type method [2] far outperforms its competitors. In an earlier paper [4], the
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truncated Newton type method combined with continuation techniques was successively used
for a much harder grid untangling problem.
In such methods, an approximation to the solution u∗ is found using the Newton type

iterations

uk+1 = uk + dk; k=0; 1; : : :

where dk is a properly scaled approximation to the Newton direction −(’′′)−1’′.
For a certain solution error measure �k (the most usual choices are �k =’(uk) − ’(u∗) or

�k = ‖’′(uk)‖) one typically has, cf. Reference [5],
�k+16(1− �#k(sk))�k (1)

where

• �∈ (0; 1] characterizes the problem non-linearity (�=1 if the problem is linear), and
• #k(sk)∈ (0; 1] is a special error measure for the solution x of an appropriate linear equation
(e.g. ’′′(uk)x=−’′(uk)) using sk iterations of the PCG method (#k =1 if the PCG
method is converged).

We will present a simple practical rule for choosing the inner iteration numbers sk , which
does not assume the knowledge of � and makes it possible to avoid making redundant PCG
iterations within each non-linear step.

2. GENERAL IDEA UNDERLYING THE STOPPING RULE

Let us brie�y describe the algorithmic construction presented in the paper.
Assume that the criterion for the outer (non-linear) iterations to be converged is

�m6” �0; 0¡”�1
Then the non-linear error estimate (1) yields the following su�cient condition for the con-
vergence:

m−1∑
k=0

#k(sk)≈ �−1 log(”−1)

Let then P and I be the computational costs of one outer iteration (including the PCG
initialization cost) and the computational cost per one typical PCG iteration, respectively.
Therefore, the total computational cost can be estimated as

m−1∑
k=0
(P+Isk)

≈
(

m−1∑
k=0
(P+Isk)

/
m−1∑
k=0

#k(sk)
)
�−1 log(”−1)

6
(

max
06k6m−1

(P+Isk)=#k(sk)
)
�−1 log(”−1)
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Hence, the stopping criterion can now be formulated in terms of choosing the inner iteration
numbers s= sk providing for a reasonably small value of each ratio

 k(s)= (P+Is)=#k(s)

Since the quantity #k(s) can be readily evaluated at any sth inner iteration (see Reference
[1] and Section 4 below) one can stop at s= sk where the �rst local minimum of  k(s) is
attained. In other words, as soon as the condition

 k(s)¿ k(s− 1)
has satis�ed, one sets sk = s and quits the inner iterations.

3. THE UNCONSTRAINED MINIMIZATION PROBLEM

Let a di�erentiable functional

’(u) :Rn →R1

be bounded from below, have gradient g(u)∈Rn, and

|’(u+ h)− ’(u)− hTg(u)|6 �
2
hTAh; �¿1 (2)

for certain symmetric positive de�nite n× n matrix A=A(u) and all su�ciently small ‖h‖.
(The value of � is not used in the actual calculations.)
Let ‖v‖∗ be any vector norm appropriate for measuring g(u). At the level of outer iterations,

the method can be described by the following pseudo-code.
Step 1: Compute g= g(u) and check the convergence, i.e. if

‖g‖∗6”0

then quit,
Step 2: Compute the matrix A=A(u) and �nd x≈A−1g such that the scaling condition

−xTg= xTAx (3)

holds and xTAx is su�ciently large,
Step 3: Set �=1 and

Check: IF ’(u+ �x)6’(u)− (�=2)xTAx
THEN u := u+ �x and go to Step 1,
ELSE �= �=2 and repeat Check.

Note that (3) yields

xTAx=− (A1=2x)T(A−1=2g)6
√
xTAx

√
gTA−1g

and therefore the quantity

#= xTAx=gTA−1 g61

is chosen to measure how close is x to (−A−1g).
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Let x at Step 2 be obtained after s iterations of the (preconditioned) conjugate gradients with
zero initial guess applied to the linear system Ax=− g. Then the required scaling condition
(3) holds by b=− g in the PCG method (see Section 4 below).

Theorem 1
The following estimate for the reduction in the functional value attained at

u+ = u+ �x

by the descent along the direction x using stepsize � holds:

’(u+)6’(u)− #
4�

gTA−1g

with the above de�ned # and �.

Proof
Indeed, for any 0¡�¡2=� one has by (2) and (3) the following estimate for the decrease in
the functional ’ along the direction x:

’(u+ �x) = ’(u) + �xTg+ (’(u+ �x)− ’(u)− �xTg)

6’(u)−
(
�− �

2
�2
)
xTAx (4)

Next, we consider the following two cases.
Case 1: If one quits with �=1 at Step 3, it follows that

’(u+)6’(u)− 1
2
xTAx6’(u)− 1

4�
xTAx

where the latter inequality holds by �¿1.
Case 2: When an actual bisection of the stepsize takes place, one has at Step 3 using (4)

with �=2�

’(u)− �xTAx¡’(u+ 2�x)6’(u)− (2�− 2��2)xTAx
which easily yields

�¿
1
2�

Since we also have

’(u+ �x)6’(u)− �
2
xTAx

the required estimate

’(u+ �x)6’(u)− 1
4�

xTAx=’(u)− #
4�

gTA−1g

follows.
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Corollary 1
If # is bounded below and � is bounded above, then

lim
i→∞

‖g(ui)‖A(ui)−1 = 0

where i is the outer iteration number and ‖v‖A=
√
vTAv.

Corollary 2
Let u∗ be the minimizer of ’(u) and assume that

gTA−1g=(4�(’(u)− ’(u∗)))¿�¿0

for all outer iterations. Then one has

’(u+)− ’(u∗)6(1− �#)(’(u)− ’(u∗))

which is exactly the convergence estimate (1).

Note that the latter readily follows from the result of Theorem 1 rewritten as

’(u+)− ’(u∗)6
(
1− gTA−1g=(4�)

’(u)− ’(u∗)
#
)
(’(u)− ’(u∗))

Therefore, in order to provide the quasi-optimum decrease in ’(u) − ’(u∗) at each outer
iteration, one can use the stopping criterion for inner PCG iterations as described in Section 2.
In view of the explicit expression for # obtained in the next Section, this stopping criterion
can be written as follows:

Iterate while s¿− (P=I) + (!0 + · · ·+!s)=!s holds true

Here s= sk is the PCG iteration number, !s are the scalars calculated from the scalar products
involved in the PCG recurrences, and (as de�ned above) P=I is the ratio of the computational
costs implied by evaluation of ’(u); g(u); A(u), and the preconditioner C to the computational
cost of one inner PCG iteration. Note that !s typically decreases as s grows while their sum
remains bounded, and therefore the PCG iterations tend to terminate rather early.

4. THE CONJUGATE GRADIENT ITERATIONS

In our case, we use the PCG iterations for the solution of the problem Ax= b with zero
initial guess:

x0 = 0

r0 = b

p0 =Cr0

for i=0; 1; : : :
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�i = rTi Cri=p
T
i Api

!i = rTi Cri�i

xi+1 = xi + pi�i

ri+1 = ri −Api�i

�i = rTi+1Cri+1=r
T
i Cri

pi+1 =Cri+1 + pi�i

Here C is a properly chosen SPD preconditioning matrix, which should approximate, in some
sense, the matrix A−1. The choice of the matrix C is subject to the requirement that the vector
w=Cr be easily calculated for any r. For instance, one of the best choices is the approximate
Cholesky preconditioning, where C=(UTU )−1 and UTU ≈A with the upper triangular matrix
U being much sparser than the exact Cholesky factor of A, cf. Reference [6] and references
therein.
If xs is obtained after s iterations of the above preconditioned conjugate gradient method

with zero initial guess applied to the linear system Ax=− g, then

xs ∈Ks=span{Cg;CACg; : : : ; (CA)s−1Cg}
and

xs= argmin
x∈Ks

(g+Ax)TA−1(g+Ax)

Since �xs ∈Ks for any scalar �, one gets

(g+ �Axs)TA−1(g+ �Axs)¿(g+Axs)TA−1(g+Axs)

which readily gives, with �=− xtsg=x
T
sAxs, the inequality

0¿(xTs g+ xTsAxs)2=xTsAxs

Hence one can obtain the required scaling condition (3) for x= xs.
Using x0 = 0 in the above method, one can also show (see Reference [1] for the proof)

that the following explicit expression for A-norm of each PCG iterate xi holds:

xTsAxs=
s−1∑
i=0

!i

Therefore, the above-mentioned quantity #s= xTsAxs=gTA−1g can be presented as

#s=(gTA−1g)−1
(

s−1∑
i=0

!i

)
; s=0; 1; : : : ; n− 1

Using the latter identity and following the approach outlined above in Section 2 one can
readily implement the new PCG stopping criterion.
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5. PARALLEL PRECONDITIONING

For parallel computations, the preconditioner C was constructed using the block incomplete
inverse Cholesky (BIIC) [7] and the second order incomplete Cholesky (IC2) [6] techniques.
Let A be reordered and split into s× s block form. For the tth diagonal block, each hav-

ing the dimension nt , the ‘basic’ index set {kt−1 + 1; : : : ; kt} is de�ned, (kt−1 = n1 + · · · +
nt−1; k0 = 0; ks= n), and ‘overlapping’ index sets are constructed as { jt(1); : : : ; jt(mt − nt)},
jt(p)6kt−1.
The BIIC-IC2 preconditioner C is

C=C(�)=
s∑

t=1
VtU−1

t (�)

[
0 0

0 Int

]
U−T

t (�)VTt

where Vt are rectangular matrices composed of unit n-vectors ej as follows:

Vt =[ejt(1)| · · · |ejt(mt−nt)|ekt−1+1| · · · |ekt ]; t=1; : : : ; s

and each upper triangular matrix Ut(�) is an incomplete Cholesky factor for the tth mt ×mt

submatrix VTt AVt:

VTt AVt =UT
t (�)Ut(�) +UT

t (�)Rt(�) + RTt (�)Ut(�)

Here Rt(�) is a strictly upper triangular error matrix.
For each t, the ‘overlapping’ index set typically includes indices not greater than kt and the

most ‘essentially’ connected to the basic index set, e.g. in the sense of the sparse matrix graph
adjacency relations. Here mt¿nt and, obviously, m1 = n1, i.e. at least the �rst overlapping set
is empty.
Here 0¡��1 is the drop tolerance parameter which determines the quality of the incomplete

factorization. The existence and correctness of such IC2 decompositions is guaranteed for any
SPD matrix.
The recurrences for the calculation of IC2 factorization can easily be obtained from the

above relation, especially in the case in which the sparsity patterns of U and R do not
have coinciding non-zero positions and their non-zero elements are subject to the conditions
|Ui; j|¿� and |Ri; j|¡�, respectively, i¡j.
The above described mathematical technique was implemented in a portable software with

the use of the message passing interface (MPI) library for communications between processes.
The special structure of the above described BIIC-IC2 preconditioning made it possible to run
the PCG iterations very e�ciently even on workstation clusters, see Reference [8].

6. TEST PROBLEM: GRID UNTANGLING

Rather hard-to-solve minimization problems arising in global untangling of computational grids
using the continuation technique, were successfully solved in Reference [4] by an application
of the inexact Newton-like minimization procedure.
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Table I. Standard vs new inner PCG stopping rules.

Criterion 32× 32 64× 64 128× 128 256× 256
”=1:d − 08 13.74 89.31 670.3 ∞
”=1:d − 04 16.86 60.30 400.1 4411
”=1:d − 02 12.19 46.25 314.4 4415
”=1:d − 01 12.57 42.88 290.4 3508
”=3:d − 01 12.36 56.84 367.4 4702

P=I =5 12.57 56.19 309.6 1861
P=I =10 16.09 51.46 287.7 1937
P=I =20 11.37 46.47 289.5 1902
P=I =40 15.31 48.66 265.9 1804
P=I =70 9.83 41.30 291.7 2008

Let us consider the following test problem: given a 2D region �, �nd a pair of functions
{x(�; �); y(�; �)} which performs the mapping

D=(�1; �2)× (�1; �2)→�

with prescribed mapping of the boundaries @D→ @�.
According to Reference [4], the solution is sought as

{x(�; �); y(�; �)}= arg min
{x; y}

∫
D

(x2� + x2� + y2� + y2�)
2 d� d�

J +
√

J 2 + 	2

where

J = x�y� − x�y�

is the Jacobian of the mapping and 0¡	�1 the small parameter used in the path-following
procedure.
The above functional is then discretized using quadrilateral grid over D and bilinear �nite

elements for approximating the functions x(�; �) and y(�; �) and using the 2D trapezoidal
quadrature rule to approximate the integrals over each cell, exactly as in Reference [4]. This
yields a discrete minimization problem for some smooth functional ’(u) with u representing
the coordinates of the unknown grid.
The above test case was considered for an S-shaped region (a non-convex octagon) with

the vertices

(0:0; 0:0); (0:0; 1:0); (0:6; 0:4); (0:6; 1:4); (1:6; 1:4);
(1:6; 0:4); (1:0; 1:0); (1:0; 0:0)

(as shown in Figure 7 in Reference [4]) and the grid sizes 32×32; 64×64; 128×128; 256×256
and run on a Pentium PC (433MHz, 128Mb RAM). Table I presents the timing results (the
total wall-clock time in seconds) obtained for the (standard) inner PCG stopping criterion
Reference [2] with ”=10−8; 10−4; 10−2; 0:1; 0:3 and for the new criterion (see also Reference
[1]) with P=I=5; 10; 20; 40; 70. (The parameters of outer iterations were the same in all
cases, and the same rule [4] was used for the reduction of the path-following parameter 	.)
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The results presented in the Table I clearly indicate the advantage of the new rule for
stopping CG iterations, especially for the largest test problem. In the latter case, the solution
of linear problems with too high precision ”=10−8 have resulted in a stagnation of the
non-linear iterations.

7. CONCLUSION

For the truncated Newton type unconstrained optimization method, the criterion for stopping
the inner PCG iterations is formulated. It is independent of any characterization of non-
linearity and is expressed in terms of scalar coe�cients involved in PCG recursions. The
stopping criterion also (slightly) depends on the ratio of the PCG startup cost to the regular
PCG iteration cost. Our strategy is aimed towards a su�cient increase of xTAx rather than
(standard) residual norm ‖g + Ax‖ reduction. (Recall that g is the gradient and x is the
approximate Newton direction.) It is worth noting here that the relative residual ‖g+Ax‖=‖g‖
used for the construction of a similar truncated Newton method in Reference [2] is rather
loosely related to the above quantity #= xTAx=gTA−1g if the matrix A is not well-conditioned.
Thus, the proposed non-linear optimization solver:

• is well adapted to large-scale problems with sparse Jacobian,
• has theoretical justi�cation for nontrivial classes of problems,
• demonstrates good performance for some hard-to-solve test problems,
• can be e�ciently parallelized with the proposed techniques.
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