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A parallel block overlap preconditioning with inexact
submatrix inversion for linear elasticity problems
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SUMMARY

We present a parallel preconditioned iterative solver for large sparse symmetric positive de8nite linear
systems. The preconditioner is constructed as a proper combination of advanced preconditioning strate-
gies. It can be formally seen as being of domain decomposition type with algebraically constructed
overlap. Similar to the classical domain decomposition technique, inexact subdomain solvers are used,
based on incomplete Cholesky factorization. The proper preconditioner is shown to be near optimal in
minimizing the so-called K-condition number of the preconditioned matrix. The e=ciency of both serial
and parallel versions of the solution method is illustrated on a set of benchmark problems in linear
elasticity. Copyright ? 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

In the present paper, we consider the preconditioned conjugate gradient (PCG) algorithm [1]
for solving linear algebraic system

Ax= b (1)

with a large sparse unstructured symmetric positive de8nite (SPD) matrix A of order n, such as
arising in computational mechanics problems. Here we concentrate our eDorts on development
of parallel preconditioners that provide su=ciently fast convergence, at least not slower that
the best known preconditioners of incomplete Cholesky type. As a basic technique, we use
the block incomplete inverse Cholesky (BIIC) factorization 8rst proposed in Reference [2]
and considered in more details in Reference [3]. For the purpose of better parallelism, we use
the additive form of this preconditioner given in Reference [3].

The BIIC preconditioner, as described in Reference [3], is based on some s× s block form
of the matrix A, where exact Cholesky factorization is used to solve subsystems associated
with the augmented diagonal blocks. When aiming at e=cient parallel solution of (1) for large

∗Correspondence to: Igor N. Konshin; Computing Center RAS; Vavilov Str. 40; 117967 Moscow; Russia
†E-mail: konshin@sci.kun.nl, horse@ccas.ru

Contract=grant sponsor: The Netherlands Technology Foundation (STW); contract=grant number: NNS. 4683
Contract=grant sponsor: The National Science Foundation; contract=grant number: NWO 047.008.007

Received 12 January 2001
Copyright ? 2002 John Wiley & Sons, Ltd. Revised 30 July 2001



142 I. E. KAPORIN AND I. N. KONSHIN

matrices, the block size will be approximately n=s, where s is usually taken to be equal to
the number of processors available. It is obvious that performing exact factorizations of still
large enough blocks is too cost expansive for large problems. However, a viable alternative
is to use an incomplete factorization and for this we choose the so-called robust incomplete
Cholesky second order factorization (IC2) method described in Reference [4]. Practice has
shown that using IC2 reduces signi8cantly the preconditioning costs almost without impairing
the quality of the resulting preconditioner.

As a consequence, most eigenvalues of the preconditioned matrix become highly clustered
around unity while the remaining ones may lie close to zero or slightly above unity. Such
eigenvalue distribution ensures a low number of the CG iterations needed for the convergence
even if the spectral condition number of the preconditioned matrix is still rather large [5].

That is, inserting some su=ciently inexact factorization within BIIC, one can obtain very
promising preconditioning by properly balancing the following three criteria: parallel e=-
ciency, arithmetic costs per iteration, and rate of the PCG convergence.

Our construction results in a purely algebraic procedure which is applicable to the pre-
conditioning of any sparse SPD matrix independent of the nature of the underlying physical
problem and the type of discretization method used.

The paper is organized as follows: in Section 2 the alternative theory of PCG convergence
is presented which supports the basic BIIC construction described in Section 3, in Section 4
we outline the technique for the block partitioning used, in Section 5 we describe the overall
parallel algorithm of the solution method, Section 6 presents the numerical results obtained
for a set of real-life large-scale computational problems, Section 7 contains some conclusive
remarks, and in Appendix we consider in more detail the estimates for the K-condition number
for the BIIC, IC2, and BIIC-IC2 preconditionings.

2. AN ALTERNATIVE THEORY OF THE PCG METHOD CONVERGENCE

Consider the PCG method [1] for solving a linear algebraic system (1) with an SPD sparse
n× n matrix A

r0 = b− Ax0; p0 = Hr0; for i=0; 1; : : :

�i =
rTi Hri
pT
i Api

; xi+1 = xi + pi�i; ri+1 = ri − Api�i

�i =
rTi+1Hri+1

rTi Hri
; pi+1 =Hri+1 + pi�i (2)

The standard upper bound for the number of PCG iterations i needed to satisfy the convergence
criterion

rTi A
−1ri6 ”2rT0 A

−1r0

with ri = b− Axi, is

i= iC(”)=
1
2

√
C log

2
”

(3)
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where

C=C(HA)= �max(HA)=�min(HA) (4)

is the spectral condition number of the preconditioned matrix HA.
It is well known that (3) provides only an upper bound for iC which can be very pessimistic

if C(HA) is large but the smallest eigenvalues of HA are well isolated and their number is
not very large. In References [3, 6] alternative estimates of the number of iterations has been
derived, based on the so-called K-condition number. Namely, the number of PCG iterations
i needed to satisfy the convergence criterion

rTi Hri6 ”2rT0 Hr0

can be bounded from above as

i= iK(”)= log2K + log2
1
”

(5)

where

K =K(HA)=
(

1
n

trace(HA)
)n/

det(HA) (6)

is the so-called K-condition number of the preconditioned matrix HA, see Reference [7]. The
K-condition number is not very sensitive with respect to the smallest eigenvalues of HA
and therefore often gives a more relevant preconditioning quality criterion as compared to
the spectral condition number. A number of preconditioning strategies were analysed from
the viewpoint of the K-condition number reduction, see References [2–4, 6]. The precondi-
tioning discussed below is based on a proper combination of the block incomplete inverse
Cholesky (BIIC) preconditioning [2, 3, 8] and the robust incomplete Cholesky second order
(IC2) preconditioning [4].

3. BLOCK EXPLICIT PRECONDITIONER

Let us brieOy describe an approximate version of the block incomplete inverse Cholesky
(BIIC) preconditioning algorithm [2, 3, 8]. Let A be reordered and split in the same way as
for the block Jacobi preconditioning, i.e. the tth diagonal block of the symmetrically reordered
matrix has the dimension nt and n1+· · ·+ns = n. Here t=1; : : : ; s, and s is the block dimension
of A. For the tth diagonal block, let us de8ne a ‘basic’ index set as {kt−1 + 1; : : : ; kt}, where
kt−1 = n1+· · ·+nt−1; k0 = 0; ks = n, and introduce ‘overlapping’ index sets as {jt(1); : : : ; jt(mt−
nt)}; jt(p)6 kt−1. For each t, the latter index set typically includes those indices not greater
than kt that are the most ‘essentially’ connected to the basic index set, e.g. in the sense of the
sparse matrix graph adjacency relations, see Section 4. Here mt¿nt and, obviously, m1 = n1,
i.e. at least the 8rst overlapping set is empty. The BIIC-IC2 preconditioner H (which will be
further referred to as the BIIC2 preconditioner) can be represented in the following additive
form:

H (�)=
s∑

t=1
VtU−1

t

[
0 0
0 Int

]
U−T
t V T

t (7)
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where Vt are rectangular matrices composed of unit n-vectors ej as follows:

Vt =[ejt(1)| : : : |ejt(mt−nt)|ekt−1+1| : : : |ekt ]; t=1; : : : ; s

and each upper triangular matrix Ut is the (in general, approximate) right Cholesky factor
constructed for the tth ‘backward extended’ principal mt ×mt submatrix V T

t AVt , that is,

V T
t AVt =U T

t Ut +U T
t Rt(�) + Rt(�)TUt (8)

where Rt(�) is a strictly upper triangular error matrix (i.e., containing only relatively small
entries). The recurrences for the calculation of IC2 factorization can easily be obtained from
(8), especially in the case when the sparsity patterns of U and R do not have coinciding
non-zero positions and their non-zero elements are subjected to the conditions |Ui; j|¿� and
|Ri; j|¡�, respectively, i¡j. Here 0¡��1 is some chosen drop tolerance parameter which
determines the quality of the incomplete factorization. Note that with �=0 we get Rt(�)=0,
so that the exact Cholesky factors are used in the construction of the preconditioner H (0),
and we obtain exactly the BIIC preconditioner from [2, 3, 8]. The existence and correctness
of these IC2 decompositions are guaranteed for any SPD matrix. Some modi8cations of the
IC2 decomposition involving less computational eDort can be found in References [4, 9].

It is shown in References [2, 3, 8] that the BIIC preconditioner H (0) possesses, in a cer-
tain sense, the K-optimality property. Moreover, using the properties of the IC2 and BIIC
decompositions one can prove (see Appendix below) that

logK(H (�)A)6 logK(H (0)A) + c0�2 (9)

where c0 is not very large even for ill-conditioned matrices. The latter estimate together with
(5) shows that for some reasonably small dropping tolerance � such BIIC2 hybrid construction
will give nearly the same rate of the PCG convergence as for the K-optimal BIIC precon-
ditioner H (0). At the same time BIIC2 involves essentially smaller costs to construct, store
and apply the preconditioner as compared to the ‘exact’ BIIC one.

Remark 3:1:
Unlike the classical overlapping DD preconditioners, the proposed one gives the exact repre-
sentation of A−1 as the overlap increases to its natural limit (and, of course, with �=0). This
is easily seen from the formula, cf. Reference [3],

H (0)=
s∑

t=1
Vt(V T

t AVt)−1V T
t −

s∑
t=2

Wt(W T
t AWt)−1W T

t

where

Wt =[ejt(1)| : : : |ejt(mt−nt)]; t=1; : : : ; s

are the matrices determining the overlap structure. Thus, the proposed method is actually
based on a completely new approach to the construction of block overlap preconditionings:
instead of any sort of overlap weighting we add the negative semide8nite correction term.

For this reason, we would like to refrain from detailed comparison of the BIIC precondi-
tioning with widely known techniques such as multisplitting methods, see Reference [10] for
a review.
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For instance, the unweighted overlapped block Jacobi preconditioner
∑s

t=1 Vt(V
T

t AVt)−1V T
t

was tested by the authors earlier and its performance was found rather unsatisfactory (even
less eDective than the non-overlapped block Jacobi).

Therefore, when we refer our preconditioning to as the ‘overlapping DD’ one, we only
want to indicate the formal structural similarity of (7) to known approaches.

4. DESCRIPTION OF THE MATRIX SPLITTING STRATEGY

The problem of matrix graph splitting is discussed in this section. We do not use any knowl-
edge of the real topology of the domain, so the decomposition of the domain is performed
using the sparse matrix graph only. Most of the ill-conditioned problems which are investi-
gated in the present report are de8ned on very stretched domains, so because of the narrow
bandwidth the simplest method for block splitting turns out to be quite successful.

The computational procedure is the following. First, a global bandwidth reduction is per-
formed using the reversed Cuthill-McKee algorithm (RCM), then the node set is divided into
s approximately equal ‘subdomains’ (or blocks), and 8nally the bandwidth inside each block
is again reduced by RCM. The overlap is obtained by using sparsity structure of the qth
degree of the coe=cient matrix, i.e. the sparsity structure of Aq (see overlap size parameter
q in Tables II and III as well as Figure 4).

More complicated matrix graph splitting techniques (as in the public-domain graph partition-
ing package METIS [11]) could provide a somewhat better splitting [12, 13]. The experiments
with medium size benchmark problems demonstrate that with this technique it is possible to
obtain 5–10% reduction of the total solution time. However, on the computer where all tests
were performed, the use of METIS for the largest problems was not possible due to its
excessive memory requirements.

5. PARALLEL IMPLEMENTATION

The above-described mathematical technique is implemented in a portable software with the
use of message passing interface (MPI) library for communications between processes.

Let us assume that the linear system (1) is solved on a parallel distributed memory computer
having NPE processor elements (PEs). Let us also assume that s=NPE, i.e. the number of
processors coincides with the number of blocks into which the original matrix A is split, and
the tth block is mapped to the tth PE, t=1; : : : ; s.

The following distribution of data is used. The tth processor stores the ‘basic’ vector
components kt−1 + 1; : : : ; kt and the rows of the matrix A with the same numbers as well
as the corresponding block of preconditioner together with the overlap.

The proposed algorithm can be implemented as follows. Let us assume that the linear
system is already permuted in accordance with the matrix splitting described in Section 4.
Perform the IC2 factorization [4] of the local submatrix V T

t AVt at the local tth PE. No data
exchanges are required at this stage.

The PCG iterations stage involves the following types of operations:

1. multiplication of the coe=cient matrix A by a vector,
2. multiplication of the preconditioner H̃ by a vector,
3. vector updates, and
4. inner products.

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:141–162



146 I. E. KAPORIN AND I. N. KONSHIN

Matrix-by-vector product. The multiplication of a sparse matrix A by a vector is a well
investigated problem. It can be presented as the following three-stage algorithm:

1. for any PE requiring some data which are local for the PE, place the corresponding
components of the vector to a local data buDer and send them to PEs which require
them;

2. receive the needed data from the other PEs;
3. multiply the local matrix coe=cient data by the vector gathered.

The resulting components of the vector will be located at the PE which computes them.
Preconditioner by a vector product. The parallel implementation of the multiplication of

the preconditioner by a vector is qualitatively similar to that of A and can be described
analogously. The diDerences are the following:

1. the data exchange topology is based on the overlap geometry;
2. the type of operation with the local data is diDerent (local triangular system solutions

instead of the local matrix by vector product);
3. after the 8rst global synchronization, two successive triangular system solutions with U T

t
and Ut are performed, and after these local computations a second global synchronization
operation is required.

Vector updates. Three vector update operations do not use interprocessor communications,
because all the vector components needed for a vector update are already placed at the
local PE.
Inner products. Two inner products are required for each PCG iteration. To perform this

operation, we call to MPI AllReduce function from the MPI library.
Properties of the parallel algorithm.

1. The total number of global exchange operations does not depend on the number of blocks
and the size of the linear system and is equal to 8ve for each PCG iteration.

2. After completion of the global data exchange, all the computations can be performed on
each PE without any additional synchronizations.

3. The computations are well balanced if the sizes of the local submatrices are approxi-
mately equal.

4. The communication costs are not large as compared to the arithmetic costs.

6. RESULTS OF THE NUMERICAL EXPERIMENTS

In this section, we present numerical results obtained on an eight-processor SUN Enterprise
3000 computer with UltraSparc CPU at 170 MHz. The size of core memory available was
only 1 Gbyte, however, our implementation 8tted well this memory size even for the largest
problems.

The test problems come from structural mechanics and linear elasticity [14, 15]. There
are two two-dimensional (‘Dam’ and ‘Bridge’) and four three-dimensional (‘Brick’, ‘Soil’,
‘Detail’, and ‘Sluice’) problems. For each of these real life problems a number of discrete
linear systems has been provided, corresponding to few consecutive regular mesh re8nement
of the initial mesh. This gives us the opportunity to examine the scalability of the parallel
solution method with respect to enlarging the problem size.

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:141–162
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Table I. Matrix properties, tuned IC2 parameters, and PCG results.

Name/# n nz(A) C(AS) density titer ttotal true res.

Bridge (�=3× 10−4; MD)
1 1722 20937 3.99+6 2.42 0.07 0.21 3.34–10
2 6270 80727 2.74+7 3.16 0.71 1.53 4.31–09
3 23838 316755 1.38+8 3.93 5.70 12.1 9.75–09
4 92862 1254552 5.96+8 4.64 54.0 110.5 1.24–08
5 366462 4993117 2.46+9 5.02 413.7 852.7 5.43–08

Bridge (�=3× 10−4; PR)
1 1722 20937 3.99+6 3.01 0.01 0.31 1.71–09
2 6270 80727 2.74+7 4.13 0.98 2.70 4.46–09
3 23838 316755 1.38+8 5.72 10.27 25.4 2.65–09
4 92862 1254552 5.96+8 7.18 105.1 227.7 1.41–08
5 366462 4993117 2.46+9 7.75 1620.6 2765.6 8.42–08

Dam (�=3× 10−3; PR)
0 3474 45862 1.30+5 2.70 0.38 1.42 8.59–09
1 13474 182502 5.79+5 2.75 3.19 9.83 7.74–09
2 53058 729582 2.41+6 2.72 28.9 59.8 8.03–09
3 210562 2917328 9.79+6 2.71 243.9 374.2 6.69–09
4 838914 11667444 3.94+7 2.70 1991.2 2482.9 8.96–09

Brick (�=3× 10−2; PR)
2 675 32785 6.06+2 0.53 0.10 0.47 8.80–09
3 4131 255415 2.45+3 0.44 2.04 4.74 6.15–09
4 28611 2016264 9.82+3 0.41 32.5 53.1 7.00–09
5 212355 16024772 3.93+4 0.40 514.6 656.5 9.90–09

Soil (�=3× 10−2; PR)
0 375 15017 2.12+3 0.60 0.04 0.18 9.09–09
1 2187 122450 9.80+3 0.47 0.92 2.13 3.46–09
2 14739 986644 4.11+4 0.42 15.9 25.2 9.89–09
3 107811 7925485 1.66+5 0.40 279.0 351.1 9.79–09

Detail (�=2× 10−2; PR)
0 11484 749446 1.09+8 0.57 64.1 73.6 7.57–09
1 79065 5726430 5.07+8 0.51 1260.2 1352.3 1.09–08
2 584127 44668305 2.15+9 0.48 21801.7 22566.3 3.09–08

Sluice (�=2× 10−2; PR)
0 2172 102114 7.52+3 0.69 0.89 1.78 7.79–09
1 12957 775743 4.06+4 0.54 19.1 27.4 5.83–09
2 87159 6007266 1.92+5 0.47 372.4 442.6 8.33–09
3 633579 47193500 8.56+5 0.43 6719.7 7295.5 9.62–09

In Table I we present the numerical results for serial IC2 preconditioning, which are the
best obtained ones with respect to the total solution time for a single right-hand side. In the
8rst three columns we show the order of the system, the total number of non-zero elements
in the matrix A, and the spectral condition number of AS. Here, AS =D−1=2

A AD−1=2
A represents
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the original matrix symmetrically scaled by its main diagonal. The minimal and maximal
eigenvalues of AS were computed from the coe=cients �i and �i obtained in the CG method
applied to the unpreconditioned system with the matrix AS. Namely, a tridiagonal matrix was
constructed in a standard way, cf. Section 11:3:4 in Reference [7], and its extremum eigen-
values were used as the approximations to the desired ones. The next column ‘density’ shows
the quantity nz(U )=nz(DA+UA) which indicates the (relative) memory volume needed for the
preconditioning, and in the next column the PCG iteration time and the total solution time in
seconds are given (the latter includes reordering, IC2 factorization, and PCG iterations). The
iterations were started with zero initial guess x0 = 0, so that r0 = b, and performed until the
stopping criterion

‖ri‖6 ”‖r0‖; ”=10−8

is satis8ed. The actual value of the relative residual norm ‖b− Axk‖=‖b‖ is given in the last
column as ‘true res.’. The IC2 tuning options are given in brackets next to the name of the
problem set, where the value of the threshold parameter is given, as well as the type of
preordering is indicated: ‘MD’ for the minimum degree preordering [16], and ‘PR’ for the
pro8le=bandwidth reduction reordering applied to the coe=cient matrix A and performed with
the use of some Cuthill–McKee type procedure.

The results of numerical experiments for the parallel BIIC2 solver for 8 PEs used are
presented in Table II. The BIIC2 tuning options are given in brackets next to the name of
the problem set, where the value of the threshold parameter � as well as the overlap size
parameter q are given. Note that the value of � is taken the same as for the sequential IC2
algorithm. The column ‘iter.’ indicates the number of PCG iterations performed. In the next
columns the wall clock time in seconds for both the PCG iterations and the total solution are
given (the latter includes the construction of the BIIC2 preconditioner and the PCG iterations,
but does not include the additional time for scaling, reordering, and computation of the 8nal
true unscaled residual that is usually not greater than 1 per cent of the total solution time).
It should be noted that the wall clock time on one processor is always greater than the pure
central processor time usually reported for the sequential version of a solver. The column
SeD presents the e=cient speedup calculated by the formula SeD =NPE(ttotal − tmpi)=ttotal; where
tmpi is the time spent for mpi data exchanges, global synchronizations and all other overheads
(delays) in computations. To compute tmpi we sum the astronomical time spent for all calls
to mpi functions, including initialization of data exchanges (MPI IRecv and MPI ISend),
waiting of data receiving (MPI WaitAll), operations of global sum (MPI AllReduce) and
global synchronization (MPI Barrier): The columns S1 presents the so-called relative speedup,
which is the ratio t1=tPE, thus the time for the parallel execution on NPE processors, divided
by the time for the same program executed on one processor. The column SIC2 is a measure
of the amount of redundancy caused by the parallel implementation and is computed as
tIC2=tPE, where tIC2 is the central processor serial solution time of the IC2 solver (especially
tuned for one PE) with the same strategy of pro8le reduction ordering (PR), which is taken
from Table I. It should be noted that the e=cient speedup is the only one which can be
estimated directly during the parallel run with no information on the run on one PE. The
value of the e=cient speedup is usually greater than that of the relative and the absolute
one.

The total wall clock solution time for each set of benchmark problems is also presented
in Figure 1 in a logarithmic scale. From this 8gure, we can see that the total solution time
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Table II. Tuned BIIC2 parameters and PCG results for NPE = 8.

Name/# n density iter. titer ttotal SeD S1 SIC2 true res.

Bridge (�=3×10−4; q=40)
1 1722 10.84 14 0.10 0.11 4.53 2.09 2.81 6.69–9
2 6270 9.98 27 0.65 0.72 5.27 2.86 3.75 4.31–9
3 23838 9.43 62 5.73 6.48 5.82 3.17 3.91 9.75–9
4 92862 8.54 152 45.93 53.93 6.46 3.92 4.22 1.24–8
5 366462 7.92 378 421.90 534.33 6.76 6.04 5.17 5.43–8

Dam (�=3×10−3; q=10)
0 3474 5.19 32 0.25 0.27 4.67 4.22 5.25 8.59–9
1 13474 4.13 56 1.39 1.59 5.91 5.49 6.18 7.74–9
2 53058 3.40 109 9.66 11.45 6.54 5.21 5.22 8.03–9
3 210562 3.05 214 64.70 76.01 7.20 5.52 4.92 6.69–9
4 838914 2.86 425 495.38 577.27 7.41 5.96 4.30 8.96–9

Brick (�=3×10−2; q=1)
2 675 1.04 35 0.08 0.08 3.25 3.62 5.87 8.80–9
3 4131 0.68 73 0.79 0.80 4.62 5.11 5.92 6.15–9
4 28611 0.53 153 10.74 10.93 6.44 5.01 4.85 7.00–9
5 212355 0.46 290 148.40 151.15 7.08 5.26 4.34 9.90–9

Soil (�=3×10−2; q=3)
0 375 2.16 22 0.05 0.05 3.05 2.40 3.60 9.09–9
1 2187 1.54 50 0.40 0.41 4.19 4.34 5.19 3.46–9
2 14739 1.03 118 5.83 5.90 5.91 4.50 4.27 9.89–9
3 107811 0.71 258 80.42 81.71 6.77 4.99 4.29 9.79–9

Detail (�=2×10−2; q=1)
0 11484 0.60 514 10.93 11.31 6.98 7.76 6.50 7.57–9
1 79065 0.52 1415 234.49 240.02 7.35 6.76 5.63 1.09–8
2 584127 0.48 3286 4355.20 4482.18 7.46 6.65 5.03 2.86–8

Sluice (�=2×10−2; q=1)
0 2172 0.72 81 0.30 0.30 4.35 4.70 5.93 7.79–9
1 12957 0.57 183 4.59 4.65 6.12 5.84 5.89 5.83–9
2 87159 0.48 551 98.60 100.92 7.12 5.33 4.38 8.33–9
3 633579 0.44 1137 1666.90 1782.42 7.42 5.61 3.76 9.55–9

reduces when the number of processors increases even for the smallest problems with n≈ 1000
and when the total solution time is less than 1 s. As a rule the larger the problem is, the
better the parallel properties of the BIIC2 solver become.

Table III presents results for BIIC2 parameters tuning for the largest problem ‘Dam’ #4
(n=838914). The column ‘overlap’ shows the value

∑s
t=1 mt=n specifying the total size of

the overlap. The table is split into four parts. The 8rst part shows the behaviour of the BIIC2
method for increasing number of blocks. It is seen that the preconditioning quality is dependent
only slightly on the number of blocks (equal to the number of PEs) which provides a very
good scalability of the method. The second part of the table shows the dependence of the

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:141–162
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Figure 1. Total wall clock solution time in seconds for each set of benchmark problems.
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Table III. The results of BIIC2 parameters tuning for problem Dam #4 (n=838914), s=NPE.

s q � density overlap C(H̃A) iter. ttotal Remarks

1 10 3.0-3 2.70 0.00 5:38 + 4 357 3441.36
2 10 3.0-3 2.76 0.03 5:04 + 4 390 2023.69
3 10 3.0-3 2.72 0.03 4:43 + 4 398 1371.41
4 10 3.0-3 2.78 0.05 5:43 + 4 406 1075.14
5 10 3.0-3 2.80 0.06 5:62 + 4 424 928.49
6 10 3.0-3 2.82 0.07 5:52 + 4 421 766.40
7 10 3.0-3 2.84 0.08 5:56 + 4 425 663.27
8 10 3.0-3 2.86 0.10 5:86 + 4 425 577.27 (∗)

8 0 3.0-3 2.56 0.00 1:00 + 5 771 903.87
8 2 3.0-3 2.61 0.02 7:16 + 4 552 696.82
8 4 3.0-3 2.68 0.04 6:56 + 4 491 634.88
8 6 3.0-3 2.74 0.06 6:24 + 4 464 624.95
8 8 3.0-3 2.80 0.08 6:01 + 4 441 613.44
8 10 3.0-3 2.86 0.10 5:86 + 4 425 577.27 (∗)

8 12 3.0-3 2.91 0.12 5:79 + 4 415 626.14
8 14 3.0-3 2.96 0.14 5:70 + 4 406 612.71
8 16 3.0-3 3.01 0.16 5:64 + 4 402 631.98
8 18 3.0-3 3.07 0.17 5:59 + 4 400 629.71
8 20 3.0-3 3.12 0.19 5:56 + 4 398 647.33

8 10 1.0-3 4.50 0.10 2:16 + 4 285 690.29
8 10 2.0-3 3.38 0.10 4:02 + 4 364 661.85
8 10 3.0-3 2.86 0.10 5:86 + 4 425 577.27 (∗)

8 10 4.0-3 2.54 0.10 7:62 + 4 482 690.66
8 10 5.0-3 2.33 0.10 9:26 + 4 529 713.73

8 0 3.0-3 0.00 0.00 3:94 + 7 11198 4182.84 PJ
8 0 3.0-3 2.56 0.00 1:00 + 5 771 956.42 BJ
8 10 3.0-3 3.18 0.19 1:45 + 5 642 1091.38 OBJ
8 10 3.0-3 2.86 0.10 5:86 + 4 425 577.27 (∗) BIIC2

BIIC2 performance on the overlap size parameter q. It is seen that this parameter must only
be not too small (say, q¿6) in order to assure good performance, while its further increase
does not change the total solution time essentially. The results of tuning the overlap parameter
q for some other problems are also presented in Figure 2.

The third part of the table shows that the dependence of the total solution time on the drop-
ping threshold parameter � is not very crucial: over 200 per cent variations change ttotal only by
less than 20%. Additional numerical results for some large problems are presented in Figure 3.
The fourth part of the table demonstrates the comparison results with some other methods.
Here PJ stands for point Jacobi preconditioning, BJ and OBJ stand for the block Jacobi and
the overlapped block Jacobi preconditioning, respectively, with IC2 subdomain solvers. The
best result in each series is marked by ‘ (∗)’. These results demonstrate the advantages of the
BIIC2 preconditioning as compared with the other methods having approximately the same
parallel properties. For comparison of diDerent methods for the same problem ‘Dam’ #4 see
also Figure 4.
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Figure 2. Tuning overlap parameter q for some large problems (s=8).

Figure 3. Tuning threshold parameter � for some large problems (s=8).

An important feature of the above-described algorithm observed in the course of numerical
testing is that its total arithmetic cost grows quite slowly with the increase of the number of
subdomains (equal to the number of PEs). This is not the case for the (approximate) block

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:141–162



A PARALLEL BLOCK OVERLAP PRECONDITIONING 153

Figure 4. Comparison of diDerent methods for s=NPE =8.

Jacobi preconditioned CG method, where the number of iterations grows rapidly with the
number of subdomains (see, for example, Figure 2a for ‘Dam’ #4 and ‘Bridge’ #5 problems
with q=0, which correspond to the above-mentioned BJ method).

It is very important that the number of processors used can be further increased up to 64
or more, because the total arithmetic costs increase not too much when the number of blocks
increases (see Figure 5).

Communication costs for BIIC2 solver for the largest problem in each set and for all ‘Dam’
problems are presented in Figure 6. These data demonstrate that the communication costs are
not large as compared to the arithmetic costs.

The value of relative speedup for the largest problem in each set and for all problems in the
Dam set are depicted in Figure 7. The presented results show that larger the problem is, the
greater the achieved speedup becomes. The data presented in Figure 7a shows that the pro-
posed method achieve almost ideal speedup for the largest problem in each set independently
of the origin and the properties of the problem solved.

It should be noted that for problem ‘Bridge’ #5 on 2 and 3 PEs we obtain even superlinear
speedup. This is due to purely algebraic reason of reduction of the total arithmetic costs for
these number of blocks s=2; 3 (see Figure 5b). This eDect was already observed for the test
problem BIHAR255 [12, 13].

7. CONCLUSIONS

In this paper, the parallel implementation of the BIIC2 preconditioned CG method is described
and tested. Both theoretical and experimental results show a remarkable e=ciency of the
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Figure 5. Tuning number of blocks s for some large problems.

proposed preconditioning for the cases when the coe=cient matrix of the linear system is SPD
but not an M-matrix and has very large condition number. Due to the relatively small portion
of parallel overhead in BIIC2-CG algorithm, the increase of speedup is clearly observed
when increasing the problem size. Despite a rather high computational cost needed by this
preconditioning, the gain obtained from the considerable reduction in the total costs of PCG
iterations far outweighs this drawback, in particular when solving a set of linear equations
with the same matrix but with many diDerent right-hand sides. The parallel e=ciency of the
solver for multiple right-hand sides will also increase due to the relative reduction of the
number of global synchronizations.

The numerical results presented in Table II demonstrate a reasonable speedup in comparison
with the single processor runs of both BIIC2 and IC2 algorithms. The larger the size of the
problem is, the greater is the speedup obtained. The absence of slowdown even for the smallest
problems shows the very e=cient usage of the computer resources in parallel mode.

The experience accumulated by the authors (more than 1000 test runs, only a small portion
of which is presented above) shows that the harder the problem is, the greater the gain
in performance of the proposed method is as compared to other commonly used parallel
iterative solvers. The parallel properties of the solver appear to be as good as expected from
our theoretical considerations.

APPENDIX

Here we consider in more details the estimates for the K-condition number for the BIIC, IC2,
and BIIC-IC2 preconditionings.
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Figure 6. Communication costs of BIIC2 solver for the largest problem in each set (left) and for
all problems in the Dam set (right).

1. Pointwise incomplete inverse Cholesky factorization. Let us recall the preconditioning
techniques 8rst introduced in Reference [2]. Let the preconditioner H be presented in the
factorized form

H =GTG
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Figure 7. Relative speedup of BIIC2 solver for the largest problem in each set (left) and for
all problems in the Dam set (right).

where G is a non-singular lower triangular matrix with prescribed sparsity pattern. Let the
structurally non-zero elements of the ith row of G be

(G)i; ji(1); : : : ; (G)i; ji(mi); 16 i6 n

where

16 ji(1)¡ · · ·¡ji(mi)= i

Then the minimum of K(HA) is attained with

(G)i; ji(p) =
(S−1

i )mi;p√
(S−1

i )mi;mi

; 16p6mi

where Si is the mi ×mi submatrix of A associated with ith subset of row and column indices,
that is,

(Si)p; q =(A)ji(p); ji(q); 16p6mi; 16 q6mi

Such preconditioning is referred to as K-optimum one (over the set of matrices H with
prescribed structure of triangular factors).

An important reformulation of this result is as follows. Let

Si =U T
i Ui

be the Cholesky factorization of Si, then

(G)i; ji(p) = (U−T
i )mi;p; 16p6mi

Copyright ? 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:141–162



A PARALLEL BLOCK OVERLAP PRECONDITIONING 157

2. Block incomplete inverse Cholesky factorization. The block incomplete inverse Cholesky
(BIIC) preconditioning was described in References [2, 3].

The idea underlying BIIC can be explained as follows. Suppose that the sparsity structure
of the (i+1)th row of G is the same as that of ith one (with the (i+1)th diagonal non-zero
position added, of course). In this case one obviously has

Si+1 =

[
Si ∗
∗ ∗

]

Hence, if the Cholesky decomposition Si =U T
i Ui is available, then

Si+1 =U T
i+1Ui+1 =

[
U T
i 0
∗ ∗

][
Ui ∗
0T ∗

]

and, 8nally,

U−T
i+1 =

[
U−T
i 0
∗ ∗

]

This means that it is not necessary to perform any separate calculations in order to obtain
the non-zero elements of the ith row of G, it only su=ces to evaluate the inverse for the left
Cholesky factor for Si+1 and then use its two last rows as the non-zero elements of the ith
and (i + 1)th rows of G.

In the general case, the sparsity pattern for the lower triangular block incomplete inverse
Cholesky factor G is determined blockwise. Let G have dense lower triangular blocks on the
main diagonal and let the block oD-diagonal non-zero positions be the same for each row of
a block. Therefore, if the matrix G is divided into block rows as

G=



GT

1

· · ·
GT
s




where every nt × n block GT
t contains rows of G from the (kt−1 + 1)th to the ktth, and

0= k0¡k1¡ · · ·¡ks = n, then the non-zero column indices of the non-zero elements of G for
these rows are

jt(1); : : : ; jt(mt − nt); kt−1 + 1
· · · · · · · · ·
jt(1); : : : ; jt(mt − nt); kt−1 + 1; : : : ; kt

Here nt = kt − kt−1 is the size of the tth block and mt − nt is the overlap size, which is equal
to the number of the oD-blockdiagonal non-zero columns in the tth block, t=1; : : : ; s. Within
this sparsity structure it is possible to use the same Cholesky factorization data for each
row of a block. In this case, one can verify that the above basic representation of non-zero
elements of the matrix G can be rewritten as

(GT
t )i; jt(p) = ([0 : : : 0 Int ]U

−T
t )i; p; 16 i6 nt; p=1; : : : ; mt
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where

V T
t AVt =U T

t Ut

is the Cholesky factorization of the corresponding principal submatrix of A. Now the key
observation leading to the BIIC algorithm is that every leading submatrix of Ut is the right
Cholesky factor for the corresponding leading submatrix of V T

t AVt . Introducing the n× nt
matrix

Et =[ekt−1+1| · · · |ekt ]; t=1; : : : ; s

one can readily show that

GT
t ≡ET

t G=ET
t VtU

−T
t V T

t

and therefore

H =GTG=
s∑

t=1
GtGT

t =
s∑

t=1
VtU−1

t (V T
t EtET

t Vt)U
−T
t V T

t

Noting that ET
t Vt =[Ot |Int ], where Ot is an nt × (mt − nt) zero matrix, and Int is an nt × nt

identity matrix, we obtain

V T
t EtET

t Vt =

[
Ont−mt OT

t

Ot Int

]

Substituting this representation into the above formula for H one readily obtains the additive
form of the BIIC preconditioning similar to the given above in Section 3.

3. K-condition number estimates for BIIC-IC2 preconditioned matrices. The important
properties of the IIC preconditioning are

(GAGT)ii =1

and, by the de8nition of the K-condition number,

K(HA)≡K(GAGT)= (det A)−1
n∏

i=1
(G)−2

ii

In the case of BIIC preconditioning these properties take the form

ET
t GAG

TEt = Int

and

K(HA)≡K(GAGT) = (det A)−1
s∏

t=1

(
kt∏

i=kt−1+1
(G)−2

ii

)

= (det A)−1
s∏

t=1

(
mt∏

i=mt−nt+1
(Ut)2ii

)

respectively.
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The next step in constricting the BIIC-IC2 preconditioning is to replace the exact Cholesky
factors Ut by their inexact counterparts Ũt constructed as was proposed in Reference [4],

V T
t AVt = Ũ T

t Ũt + Ũ T
t Rt + RT

t Ũt

where Rt is an error matrix with a relatively small norm. (In order to clarify the exposition,
here we use the simplest possible version of the IC2 decomposition.) The corresponding
BIIC-IC2 preconditioner takes the form

H̃ =
s∑

t=1
VtŨ−1

t

[
0 0
0 Int

]
Ũ−T
t V T

t

and, as above, one can readily check up that

H̃ = G̃TG̃

where

G̃=



G̃T
1

· · ·
G̃T
s




with

G̃T
t ≡ET

t G̃=ET
t VtŨ

−T
t V T

t ; t=1; : : : ; s

First of all, one should recall one of the main properties of the IC2 decomposition

Diag(Ũ−T
t (V T

t AVt)Ũ−1
t )= Imt

In view of the above de8nition of G̃, the latter readily yields that

Diag(ET
t (G̃AG̃T)Et)= Int

Hence, one has trace H̃A= n, and therefore

K(H̃A)≡K(G̃AG̃T) = (det A)−1
s∏

t=1

(
kt∏

i=kt−1+1
(G̃)−2

ii

)

= (det A)−1
s∏

t=1

(
mt∏

i=mt−nt+1
(Ũt)2ii

)

The second important property of the IC2 preconditioning is

det(V T
t AVt + RT

t Rt)=det(Ũ T
t Ũt)

which readily yields

det(Imt + Rt(V T
t AVt)−1RT

t )= (det Ũt)2(detUt)−2 =
mt∏
i=1

(Ũt)2i; i
(Ut)2i; i
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Using now the above expressions for K(H̃A) and K(HA), we obtain

K(H̃A)
K(HA)

=
s∏

t=1

(
mt∏

i=mt−nt+1

(Ũt)2i; i
(Ut)2i; i

)

=
s∏

t=1

(
mt−nt∏
i=1

(Ut)2i; i
(Ũt)2i; i

)
det(Imt + Rt(V T

t AVt)−1RT
t )

6
s∏

t=1
det(Imt + Rt(V T

t AVt)−1RT
t )

where the latter inequality readily follows from the properties of IC2 factorization of the
leading (mt − nt)× (mt − nt) submatrix of V T

t AVt (in view that it is obviously expressed via
the leading (mt − nt)× (mt − nt) submatrices of Ũt and Rt).

Finally, if each non-zero element of Rt is not larger than � in absolute value, then the latter
equality readily yield the estimate

logK(H̃A)6 logK(HA) + c0�2

with

c0 =
s∑

t=1

nz(Rt)
�min(V T

t AVt)

Our analysis can be completed using the (rather rough) bound

nz(Rt)6 nz(Ut)

and therefore the desired estimate logK(H̃A)= logK(HA) +O(�2) is obtained.
4. On the choice of overlap in the BIIC preconditioning. Let us consider here, for sim-

plicity, the case s=2 (the conclusions in the general case appear to be essentially the
same)

A=



A00 A01 A02

A10 A11 A12

A20 A21 A22




where the ‘basic’ diagonal blocks are taken as[
A00 A01

A10 A11

]
and A22

while the second block including the overlap is[
A11 A12

A21 A22

]
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Here we supposed that the matrix is ordered in such a way that the overlapping positions are
placed the last in the 8rst block. The corresponding BIIC preconditioner has the form

H =



[
A00 A01

A10 A11

]−1

0

0 0


+



0 0

0

[
A11 A12

A21 A22

]−1


−



0 0 0

0 A−1
11 0

0 0 0




and the corresponding K-condition number of the preconditioned matrix can be expressed as

K(HA)= (det A)−1 det

[
A00 A01

A10 A11

]
det(A22 − A21A−1

11 A12)

Since only the term det(A22 −A21A−1
11 A12) depends on the choice of the overlap, we conclude

that, at least, the norm of A12 =AT
21 should be as large as possible, which reassures our claim

that the overlapped positions should be ‘strongly connected’ to the corresponding diagonal
block A22.
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