
Parallel Solution of Large Sparse

SPD Linear Systems Based on
Overlapping Domain Decomposition

Igor E. Kaporin and Igor N. Konshin

Computing Center RAS
Vavilov str. 40, 117967 Moscow, Russia

{kaporin,horse}@ccas.ru

Abstract. We present a parallel iterative solver for large sparse sym-
metric positive definite (SPD) linear systems based on a new theory
describing the convergence of the Preconditioned Conjugate Gradient
(PCG) method and a proper combination of advanced preconditioning
strategies. Formally, the preconditioning can be interpreted as a special
(nearly optimum from the viewpoint of the new PCG theory) version of
overlapping domain decomposition with incomplete Cholesky solutions
over subdomains. The estimates of parallel efficiency are given as well as
the results of numerical experiments for the serial and parallel versions
of the solver.

1 The New Theory of the PCG Method Convergence

Consider the PCG method [1] for solving linear algebraic system

Ax = b (1)

with SPD sparse n× n matrix A:

r0 = b−Ax0, p0 = Hr0; for i = 0, 1, ... :

αi =
rT
i Hri

pT
i Api

, xi+1 = xi + piαi, ri+1 = ri −Apiαi,

βi =
rT
i+1Hri+1

rT
i Hri

, pi+1 = Hri+1 + piβi. (2)

The standard upper bound for the iteration number needed for the ε times
reduction of the error norm

√
rT
i A−1ri is

iC(ε) =
1
2

√
C log

2
ε
, (3)

where
C = C(HA) = λmax(HA)/λmin(HA) (4)

V. Malyshkin (Ed.): PaCT-99, LNCS 1662, pp. 436–446, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Parallel Solution of Large Sparse SPD Linear Systems 437

is the spectral condition number of the preconditioned matrix HA.
Motivated by the need of a more feasible preconditioning quality criterion,

the following theory was developed. It was shown in [5,7] that the number of
iterations needed for the ε times reduction of the error norm

√
rT
i Hri can be

bounded from above as

iK(ε) = log2 K + log2

1
ε
, (5)

where
K = K(HA) =

(1
n
trace(HA)

)n

/ det(HA) (6)

is the so-called K-condition number of the preconditioned matrix HA, see [2]. A
number of preconditioning strategies were analyzed with respect to a decrease
of the K-condition number, see [4,5,7,8]. The preconditioning discussed below is
actually based on a proper combination of the Block Incomplete Inverse Cholesky
(BIIC) preconditionings [4,6,7] and the robust Incomplete Cholesky 2nd order
(IC2) preconditionings [8].

2 A Simple Version of IC2 Factorization

For the sake of convenience, let us assume further that the matrix A is symmet-
rically scaled to the unit diagonal. The basic relationship determining the IC2
type preconditioning has the form

A = UTU + UTR + RTU, (7)

where U is a nonsingular upper triangular matrix (an approximation to the exact
right Cholesky factor of A), and R is a strictly upper triangular error matrix
with “small” elements. The existence and correctness of such decomposition is
guaranteed for any SPD matrix A. Some modifications of this approach requiring
less computational effort can be found in [8,10].

Very important properties of the IC2 two-side preconditioned matrix

M = U−TAU−1 ≡ I + RU−1 + U−TRT (8)

are as follows:

diagM = I, K(M) = det(I + RA−1RT). (9)

The recurrences for the calculation of IC2 factorization can easily be obtained
from (7), e.g., when the sparsity patterns of U and R do not have coinciding
nonzero positions and their nonzero elements are subjected to the conditions
|Ui,j | ≥ τ and |Ri,j | < τ , respectively, i < j. Here 0 < τ � 1 is the drop
tolerance parameter determining the preconditioning quality. In particular, the
second equation of (9) easily yields logK(M) = O(‖A−1‖τ2) which should be
related to (5). The latter remark explains why this decomposition is referred to
as the second order one.

438 Igor E. Kaporin and Igor N. Konshin

However, the calculation and application of the incomplete Cholesky pre-
conditioning cannot be efficiently parallelized for message-passing architectures
having relatively large communication overheads. Henceforth, next we consider
some special parallel preconditionings which effectively exploit IC2 factorizations
of certain set of submatrices of the original coefficient matrix A.

3 Block Explicit Preconditioner

Let us briefly describe the Block Incomplete Inverse Cholesky (BIIC) precondi-
tioning algorithm [4,6,7]. Let A be reordered and split in the same way as for the
Block Jacobi preconditioning, i.e. the t-th diagonal block of the symmetrically
reordered matrix has the dimension nt and n1 + . . . + ns = n. Here t = 1, ..., s,
and s is the block dimension of A. For the t-th diagonal block, let us define the
“basic” index set as

{kt−1 + 1, ..., kt},
where kt−1 = n1 + ... + nt−1, k0 = 0, ks = n, and introduce the “overlapping”
index sets as

{jt(1), ..., jt(mt − nt)), jt(p) ≤ kt−1.

For each t, the latter index set typically includes those indices not greater than kt

that are the most “essentially” connected to the basic index set, e.g. in the
sense of the sparse matrix graph adjacency relations. Here mt ≥ nt and, ob-
viously, m1 = n1, i.e. at least the first overlapping set is empty. The BIIC
preconditioner H can be represented in the following additive form:

H =
s∑

t=1

VtU
−1
t (V T

t EtE
T
t Vt)U−T

t V T
t , (10)

where Vt and Et are rectangular matrices composed of unit n-vectors ej as
follows:

Vt = [Qt|Et], t = 1, ..., s,

Qt = [ejt(1)|...|ejt(mt−nt)], Et = [ekt−1+1|...|ekt],

(Q1 is set to an empty matrix), and each upper triangular matrix Ut is the right
Cholesky factor of the t-th “extended” diagonal mt×mt submatrix V T

t AVt, that
is,

V T
t AVt = UT

t Ut. (11)

Remark 1. It was shown in [4,6,7] that the BIIC preconditioner H possesses
the K-optimality property in the following sense. Let L be a set of sparse lower
triangular matrices which may have nonzero elements only in positions (i, j),

j ∈ {jt(1), . . . , jt(mt − nt), kt−1 + 1, . . . , i}, kt−1 + 1 ≤ i ≤ kt.

Then
H = arg min

H=LT L,L∈L
K(HA).

Another useful property is trace(HA) = n.

Parallel Solution of Large Sparse SPD Linear Systems 439

Remark 2. Note that the Block Jacobi preconditioner (where mt = nt, t =
1, . . . , s, and therefore all Qt are empty matrices) can be represented using the
above notations as

H =
s∑

t=1

Et(ET
t AEt)−1ET

t ,

where ET
t AEt is exactly the t-th diagonal block of A.

4 Using IC2 Factorizations within the BIIC
Preconditioning

For each t = 1, . . . , s, let us replace the exact Cholesky factorizations (11) by
the corresponding IC2 decompositions of the type (7)

V T
t AVt = ŨT

t Ũt + ŨT
t Rt + RT

t Ũt. (12)

For the sake of simplicity, let also assume that the small element dropping strat-
egy is modified in such a way that the first mt − nt diagonal elements of Ũt

coincide with those of Ut. Using the properties of the IC2 and BIIC decompo-
sitions mentioned above, one can see that the ratio of the K-condition numbers
for the matrices H̃A and HA, where

H̃ =
s∑

t=1

VtŨ
−1
t (V T

t EtE
T
t Vt)Ũ−T

t V T
t , (13)

can be estimated as

K(H̃A)
K(HA)

=
s∏

t=1

det(I + Rt(V T
t AVt)−1RT

t) ≤ exp(c0τ2).

The latter inequality follows since Rt are the local IC2 error matrices with O(τ)
elements. Moreover, we expect c0 to be not very large even for ill-conditioned
matrices since usually ‖(V T

t AVt)−1‖ � ‖A−1‖. This yields

logK(H̃A) ≤ logK(HA) + c0τ
2,

and the estimate (5),(6) shows that for some reasonably small IC2 dropping
tolerance τ such BIIC-IC2 hybrid construction will give nearly the same rate of
the PCG convergence as for the K-optimum BIIC preconditioner. At the same
time BIIC-IC2 involves essentially smaller costs for the evaluation, storage, and
the use of the preconditioner.

5 Parallel Implementation

The above mathematical technologies were implemented in a portable software
written in simplified message-passing style using the MPI-like interface to the
low-level communication library.

440 Igor E. Kaporin and Igor N. Konshin

Let us assume that the linear system (1) is solved on a parallel computer
having NPE processor elements (PEs) with distributed memory. Let us also as-
sume that s = NPE, i.e. the number of processors coincides with the number of
blocks to which the original matrix A is split, and the i-th block corresponds
to i-th PE, i = 1, ..., s.

The proposed algorithm can be implemented as follows. Perform the IC2
factorization (12) of the local submatrix V T

i AVi at the local i-th PE. No data
exchanges are required at this stage.

The PCG iterations stage (2) involves the following types of operations:
(a) multiplication of the coefficient matrix A by a vector,
(b) multiplication of the preconditioner H̃ by a vector, and
(c) inner product.
Three vector update operations are also needed on each iteration, but they do

not require interprocessor communications with our distribution of data, where t-
th processor stores the vector components kt−1 + 1, . . . , kt and the rows of the
matrix A with the same numbers as well as the corresponding block of precon-
ditioner.

Matrix by a vector product. The multiplication of matrix by a vector
is a well investigated problem. It can be presented as the following three-stage
algorithm:

1. for any PE requiring some data which are local for the PE, place the
required components of the vector to a local data buffer and send them to PEs
which require them;

2. receive the required data from the other PEs;
3. multiply the local matrix coefficient data by the vector gathered.
The resulting components of the vector will be located at the PE which

computes them.
Preconditioner by a vector product. The multiplication of precondi-

tioner by a vector can be presented as an analogous algorithm. The differences
are the following:

1. the data exchange topology is based on the overlap geometry;
2. the type of operation with the local data (local triangular system solutions

instead of the local matrix by vector product);
3. after the first global synchronization, two successive triangular system

solutions with UT
i and Ui are performed, and the second global synchronization

operation is required after these local computations.
Inner product. Two inner products are required to perform at each PCG

iteration (2). This is one global exchange MPI-like operation consisting from the
following local ones:

1. the partial inner product for the local part of the vector is computed at
each PE;

2. the scalars obtained are sent to the root PE;
3. the final scalar product is computed on the root PE;
4. the final scalar product is sent from the root PE to the other PEs.

Parallel Solution of Large Sparse SPD Linear Systems 441

Communication costs. Let us consider a model 3-D problem with standard
7-point stencil matrix operator on a cube, which is split into p3 cubic subdomains
each of the size m× m ×m, i.e. n = m3p3 and NPE = s = p3. Let the overlap
be of the width of q grid points and the corresponding preconditioner H̃ is two
times more dense than the original matrix A (this is a typical preconditioner
density used in practice).

The arithmetic and communication costs per one PCG iteration are given in
Table 1. It can be easily seen from the Table 1 that the ratio of the total arith-
metic costs to the communication costs is approximately equal to c = 4m/(q+1),
i.e. it is required to perform c arithmetic operations per one float word exchange
between PEs. It should be noted that for 2-D decomposition this ratio is ex-
pressed by the same formula, where m = (n/s)1/2.

Table 1. The costs per one PCG iteration for the uniform p× p× p DD.

Stage Arithmetic costs Communication costs

(a) Ax 7n 6m2s

(b) H̃x 14n 6mq(m + 2)s
(c) yT x 2n 4log2s

Properties of the parallel realization. (1) The total number of global
exchange initialization operations does not depend on the number of blocks and
the size of the linear system and is equal to 5 per each PCG iteration. (2) After
completion of the global data exchange, all the computations can be performed
at each PE without any additional synchronizations. (3) There is no serial part
in the code implementing the proposed algorithm. (4) The computations are well
balanced if the sizes of the local submatrices are approximately equal. (5) The
communication costs are not large as compared to the arithmetic costs.

6 Numerical Experiments

We present numerical results obtained on eight-processor SUN 10000 Starfire
computer and a cluster of four Pentium II workstations. We have used cer-
tain hard-to-solve test matrices arising in finite element analysis of thin shells
which were examined in [3] and are available from MatrixMarket collection
(CYLSHELL set available at URL http://math.nist.gov/MatrixMarket/data/
misc/cylshell/cylshell.html). We also present the results obtained for the matrix
BIHAR255 resulting from discrete biharmonic operator with 13-point stencil on
a 255× 255 square grid with Dirichlet type boundary conditions [4,6,7].

Some data on these test matrices are given in Table 2.
Zero initial guess and the relative stopping criterion by the Jacobi scaled

residual norm with ε = 10−9 were used for all test problems. For the CYLSHELL

442 Igor E. Kaporin and Igor N. Konshin

Table 2. Test matrix properties.

name mesh n nz(A) C(A)

S1RMQ4M1 30 × 30 5489 281111 1.8 · 106

S3RMQ4M1 30 × 30 5489 281111 1.8 · 1010

S3DKQ4M2 150 × 100 90499 4820891 1.9 · 1011

S3DKT3M2 150 × 100 90499 3753461 3.6 · 1011

BIHAR255 255 × 255 65025 840229 2.2 · 108

set, the right hand side was computed from the test solution x = [1 . . . 1]T as
in [3], while for BIHAR255 the test solution was obtained from the function
x sin(πx) sin(πy) exp(xy) over the unit square. Block splittings of the matrices
were obtained with the use of the public-domain graph partitioning package
METIS [9] with the default parameters. The overlap was obtained using sparsity
structure of the q-th degree of the coefficient matrix. The preconditioning was
constructed using overlap parameter q = 6 and IC2 drop tolerance parameter
τ = 0.003.

The results on parallel performance are illustrated for BIHAR255 test. The
speedups and wall clock times (in seconds) obtained on a SUN 10000 Starfire
computer are given in Table 3. The case of 8 PEs is not presented because
one node of the computer system was permanently occupied by another process
running for a week or even more.

Table 3. Parallel efficiency for BIHAR255 test.

NPE time Mflops/NPE Mults/Sends Efficiency Speedup Actual speedup

1 766.90 16.24 – 100.00 1.00 1.00
2 239.46 16.14 1394.44 97.95 1.96 3.20
3 133.14 15.75 905.54 96.85 2.91 5.76
4 93.67 15.92 612.59 97.51 3.90 8.18
5 69.88 15.92 415.98 95.67 4.78 10.97
6 65.36 15.36 345.35 89.32 5.36 11.73
7 52.55 14.97 294.22 88.39 6.19 14.59

The observed superlinear actual speedup is due to the sharp decrease of
the preconditioning costs when passing from the incomplete factorization of the
whole matrix to that of its submatrices, which have significantly smaller band-
width (see Table 4).

The parallel efficiency obtained on a cluster of four Pentium II 266 MHz
workstations connected via an 100 Mbit Ethernet switch was within the 45
to 85% range for the problems of larger sizes.

Parallel Solution of Large Sparse SPD Linear Systems 443

In Tables 4–6, ACprec, ACiter, and ACtot denote the number of scalar multi-
plications needed to construct the preconditioner, perform Niter PCG iterations,
and the total number of multiplications divided by nz(A), respectively. The “Fill-
in” given in percents means the ratio of the space occupied by the preconditioner
to the space occupied by the upper triangle of the coefficient matrix.

Table 4. Dependence of operation count and iteration number on the number
of blocks for BIHAR255 test.

s C(H̃A) Niter ACprec ACiter ACtot Fill-in,%

1 0.215E+05 408 4934.51 1824.44 6758.95 278.20
2 0.111E+05 313 2250.61 1509.73 3760.35 310.47
3 0.122E+05 328 2143.84 1596.56 3740.40 314.61
4 0.990E+04 314 1547.47 1549.70 3097.17 320.83
5 0.114E+05 315 1246.48 1568.12 2814.59 324.79
6 0.119E+05 336 1165.37 1696.17 2861.54 331.35
7 0.115E+05 328 974.74 1664.06 2638.80 333.66

An important feature of the above described algorithm observed in the course
of numerical testing is that its total arithmetic cost grows quite slowly with the
increase of the number of subdomains (equal to the number of PEs). This is not
the case for the (approximate) Block Jacobi preconditioned CG method, where
the number of iterations grows rapidly with the number of subdomains.

In order to compare some other parallel preconditioning to our method, we
present iteration data for the diagonal (Jacobi) preconditioning, (approximate)
Block Jacobi and the simple “uniform” overlapping with weighting. The same
IC2 approximate inversion of blocks were used for the latter two methods. The re-
sults obtained with the number of blocks s = 4 for the test problem S3DKT3M2
are given in Table 5.

Table 5. Comparison of parallel iterative methods for S3DKQ4M2 test.

Preconditioner C(H̃A) Niter ACprec ACiter ACtot Fill-in,%

Jacobi 0.312E+11 41930 0.00 42272.13 42272.13 0.00
Block Jacobi 0.434E+09 1251 391.59 3530.51 3922.10 158.89
Simple overlap 0.356E+09 1267 755.91 4175.87 4931.78 205.12
BIIC overlap 0.812E+08 643 429.93 1932.18 2362.11 181.22

Further results obtained for the test problems S3DKQ4M2 and S3DKT3M2
are presented in Tables 6 and 7, respectively.

444 Igor E. Kaporin and Igor N. Konshin

Table 6. Dependence of operation count and iteration number on the number
of blocks for S3DKQ4M2 test.

s C(H̃A) Niter ACprec ACiter ACtot Fill-in,%

1 0.323E+08 553 456.48 1446.36 1902.84 147.08
2 0.467E+08 584 474.92 1571.24 2046.16 154.45
3 0.513E+08 579 464.80 1603.54 2068.34 162.19
4 0.532E+08 573 414.62 1582.98 1997.60 161.51
5 0.561E+08 579 422.40 1636.23 2058.63 167.72
6 0.583E+08 569 425.58 1644.81 2070.39 174.06
7 0.597E+08 578 442.12 1671.39 2113.51 174.16
8 0.650E+08 568 403.83 1664.51 2068.34 177.95

10 0.643E+08 557 390.80 1667.49 2058.29 184.14
12 0.704E+08 574 416.56 1749.91 2166.47 189.53
16 0.681E+08 532 365.79 1686.47 2052.26 201.39
20 0.789E+08 564 375.07 1839.39 2214.45 210.37
24 0.876E+08 555 357.88 1844.29 2202.17 216.41
32 0.862E+08 546 363.74 1895.77 2259.51 231.00

Table 7. Dependence of operation count and iteration number on the number
of blocks for S3DKT3M2 test.

s C(H̃A) Niter ACprec ACiter ACtot Fill-in,%

1 0.398E+08 614 528.23 1738.48 2266.71 164.28
2 0.620E+08 667 518.44 1930.44 2448.88 170.44
3 0.692E+08 666 481.57 1953.73 2435.30 174.27
4 0.776E+08 658 445.01 1967.11 2412.13 179.73
5 0.847E+08 673 445.58 2026.98 2472.56 181.92
6 0.841E+08 682 463.73 2117.29 2581.02 190.96
7 0.906E+08 651 420.54 2000.73 2421.27 187.89
8 0.869E+08 637 424.42 2012.10 2436.52 196.21

10 0.982E+08 666 387.29 2188.58 2575.88 208.65
12 0.107E+09 642 348.71 2082.22 2430.93 204.46
16 0.112E+09 628 326.98 2098.51 2425.48 214.03
20 0.131E+09 658 310.09 2251.29 2561.38 221.84
24 0.137E+09 650 312.75 2278.20 2590.95 229.97
32 0.143E+09 661 288.25 2410.93 2699.18 243.87

Parallel Solution of Large Sparse SPD Linear Systems 445

As is seen, with the increase of the number of blocks s, the iteration number
of the proposed method stays nearly the same, which is important for attaining
high speedups on computers with large communication latency. Also, the increase
in the storage occupied by the preconditioner is not very substantial as long as
the number of subdomains is not large. The reason is that the increase of the
overlap is partially compensated by more precise and more sparse incomplete
factorizations corresponding to smaller blocks.

7 Conclusions

The experience accumulated by the authors (more than 500 test runs, only small
portion of which is presented above) shows that the harder the problem is, the
greater the gain in the performance of the proposed method as compared to
other commonly used parallel iterative solvers. The parallel properties of the
solver appear to be as good as expected from our theoretical considerations.

Acknowledgements

The authors would like to acknowledge several useful discussions with
V.A.Garanzha and V.N.Konshin concerning algorithmic implementation issues
and models of parallel computations.

References

1. Axelsson, O.: A class of iterative methods for finite element equations. Computer
Meth. Appl. Mech. Engrg. 9 (1976) 123–137 436

2. Axelsson, O.: Iterative solution methods. Cambidge University Press, Cambridge
(1994) 437

3. Benzi, M., Kouhia, R., Tuma, M.: An assessment of some preconditioning tech-
niques in shell problems. Technical Report LA-UR-97-3892, Los Alamos National
Laboratory, Los Alamos, NM (1992) 441, 442

4. Kaporin, I. E.: On preconditioning for the conjugate gradient method when solving
discrete analogues of differential problems. Differ. Uravn. 7 (1990) 1225–1236 (in
Russian) 437, 438, 441

5. Kaporin, I. E.: Explicitly preconditioned conjugate gradient method for the solu-
tion of unsymmetric linear systems. Int. J. Computer Math. 40 (1992) 169–187
437

6. Kaporin, I. E.: Spectrum boundary estimation for two-side explicit preconditioning.
Vestnik Mosk. Univ., ser. 15, Vychisl. Matem. Kibern. 2 (1993) 28–42 (in Russian)
437, 438, 441

7. Kaporin, I. E.: New convergence results and preconditioning strategies for the
conjugate gradient method. Numer. Linear Algebra Appls., 1 (1994) 179–210 437,
438, 441

8. Kaporin, I. E.: High quality preconditioning of a general symmetric positive definite
matrix based on its UT U + UT R + RT U -decomposition. Numer. Linear Algebra
Appl., 6 no.2 (1999) (to appear) 437

446 Igor E. Kaporin and Igor N. Konshin

9. Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning, Technical Re-
port 98-036, Dept. Comp. Sci. Engrg., Army HPC Research Center, Univ. of Min-
nesota, MN (1998) 442

10. Tismenetsky, M.: A new preconditioning technique for solving large sparse linear
systems. Linear Algebra Appls. 154-156 (1991) 331–353 437

	The New Theory of the PCG Method Convergence
	A Simple Version of IC2 Factorization
	Block Explicit Preconditioner
	Using IC2 Factorizations within the BIIC Preconditioning
	Parallel Implementation
	Numerical Experiments
	Conclusions

