
  

Delay epidemic models based on disease 
duration

Masoud Saade 

S.M. Nikol’skii Mathematical Institute, Peoples’ Friendship 
University of Russia (RUDN University) 



  

Contents
 An epidemic delay model determined by the infectivity and disease durations 

● Model with distributed parameters  

● Reduction to the ODE model 

● Reduction to the delay model 

● Epidemic characteristics for the delay model 

● Numerical simulation and model comparison 

 An epidemic delay model determined by the disease and immunity durations   

● Epidemic Dynamics with immunity waning

● Integral Equation and Stationary Solutions 

● Stability of the Stationary Solution 

 Conclusions 



  

1. An epidemic delay model determined by the infectivity and disease durations 

1.1. Model with distributed parameters 

dS (t )
dt

=−J (t )=− β
N
S (t ) I (t ) , (1a)

dE (t )
dt

=J (t )−J (t−τ 0) , (1b)

dI (t )
dt

=J (t−τ 0)−∫
0

t

ρ(t−η)J (η−τ 0)d η−∫
0

t

μ(t−η)J (η−τ 0)d η , (1c)

dR (t )
dt

=∫
0

t

ρ(t−η)J (η−τ 0)d η , (1d)

dD (t )
dt

=∫
0

t

μ(t−η)J (η−τ 0)d η , (1e)

where              and               are the recovery and death rates at time t of the individuals became 

infectious at time                is the size of newly exposed at time t.

ρ(t−η) μ(t−η)
η . J (t ) 
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S (t )+E (t )+ I (t )+R (t )+D (t )=N (= constant) . (0)
β  is disease transmisson rate , τ 0  is the infectivity period.



  

The model is completed with the initial conditions:

S (0)=N−I (0) , I (0)>0 , E (0)=R (0)=D (0)=0 ,

S (t )=N−I (t ) , I (t )≥0 , E (t )=R (t )=D (t )=0 , ∀ t∈[−τ0 ,0 ) . (2)

Theorem 1. Solution of system (1) with conditions (2) exists and it is positive and unique.
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1.2. Reduction to the ODE model

Assuming that recovery and death rates are uniformly distributed in time during disease duration

ρ(t−η)={ρ0 : t−τ1≤η≤t
0 :η<t−τ1

,

μ(t−η)={μ0 : t−τ1≤η≤t
0 :η<t−τ1

, (3)

where            is the disease duration. 

Assuming that              , then system (1) can be reduced to the ODE model:

τ1>0

ψ= 1
τ0
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dS (t )
dt

=− β
N
S (t ) I (t ) , (4 a)

dE (t )
dt

= β
N
S (t ) I (t )−ψ E (t ) , (4 b)

dI (t )
dt

=ψ E (t )−(ρ0+μ0) I (t ) , (4 c)

dR (t )
dt

=ρ0 I (t ) , (4 d)

dD (t )
dt

=μ0 I (t ) , (4 e)

with the initial conditions

S (0)=N−I (0) , I (0)>0 , E (0)=R (0)=D (0)=0. (5)
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S (t )+E (t )+ I (t )+R (t )+D (t )=N (= constant) .



  

1.3. Reduction to the delay model 

Assuming that the individuals                      exposed at time                 , recover or die

at time t with certain probabilities. 

This assumption is consistent with the following choice of the functions     and     : 

where                  , and     is the Dirac delta-function. 

J (t−τ 0−τ1) t−τ0−τ1

ρ μ

ρ(t−η)=ρ1δ (t−τ1−η) , μ(t−η)=μ1δ (t−τ1−η) ,

ρ1+μ1=1 δ

Hence, we obtain our delay model.
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dS (t )
dt

=−J (t ) =− β
N
S (t ) I (t ) , (6a)

dE (t )
dt

=J (t )−J (t−τ 0) , (6b)

dI (t )
dt

=J (t−τ 0)−J (t−τ 0−τ1) , (6 c)

dR (t )
dt

=ρ1 J (t−τ 0−τ1) , (6d)

dD (t )
dt

=μ1 J (t−τ 0−τ1) . (6 e)

The system is completed with the initial conditions

S (0)=N−I (0) , I (0)>0 , E (0)=R (0)=D (0)=0 ,

S (t )=N−I (t ) , I (t )≥0 , E (t )=R (t )=D (t )=0 , ∀ t∈[−(τ0+τ1) ,0 ) . (7)
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Theorem 2. Solution of system (6) with conditions (7) exists and it is positive and unique.

S (t )+E (t )+ I (t )+R (t )+D (t )=N (= constant) .



  

1.4. Epidemic characteristics for the delay model 

1.4.1. Basic reproduction number

ℜ0=β τ1

S0

N
. (8)

1.4.2. Final size of epidemic

The final size of susceptible compartment can be calculated from the formula 

ln (α )=ℜ0(α−1) , (9)
where α=

S f
S0

.

Integrating (6d) and (6e) and taking the limits as           , we obtain the final size of recovered and 
dead populations: 

t→∞

R f=ρ1(S0−S f ) , D f=μ1(S0−S f ) . (10)

9

Describes the average number of secondary infections produced by a single infected individual in a 

completely susceptible populations.



  

1.5. Numerical simulation and model comparison 

Figure 1.

Numerical simulations of the delay model and ODE model for different countries and for the period 

of time from November 15, 2021 to May 15, 2022. 

β=0.23 , τ 0=2 , τ1=6(ℜ0=1.32) , ρ1=0.97 , μ1=0.03 ,

N=331.9×106 , I (t<0)=130000 , I (0)=257000 .

β=0.276 , τ0=3 , τ1=6 , ρ1=0.97 , μ1=0.03 ,

N=67.75×106 , I (t<0)=9000 , I (0)=23550.

Left: Right:
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ψ=1/ τ 0 , ρ0=1/ ρ1 , μ0=1/μ1 .



  

Figure 2.

Numerical simulations of the ODE model for USA, for the period of time from November 15, 2021 to 

May 15, 2022. 

 Left: Right:

β∈[0.23 ,0.281] , τ0=2 , τ1=6 , ρ1=0.97 , μ1=0.03

N=331.9×106 , I (t<0)=130000 , I (0)=257000

β=0.4 ,ψ=0.5 , I (0)=150000
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2. An epidemic delay model determined by the disease and immunity durations    

2.1. An Epidemic Delay Model with immunity waning

dS (t )
dt

=−J (t )+J (t−τ1−τ2) , (11a)

dI (t )
dt

=J (t )−J (t−τ1) , (11b)

dR (t )
dt

=J (t−τ1)−J (t−τ1−τ2) , (11c)

J (t )= β
N
S (t ) I (t ) , (11e)

where

        is disease duration,        is duration of natural immunity,         is disease transmission rate.τ1 τ2 β
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System (11) is completed with the initial conditions:

S (t )=I (t )=R (t )=0:∀ t∈[−(τ1+τ2) ,0 ) , S (0)=N−I (0) , I (0)>0 , R (0)=0. (12)

S (t )+ I (t )+R (t )=N :∀ t∈ℝ+ . (13)Note that



  

2.2. Integral Equation and Stationary Solutions 

Integrating equations (11a) and (11b) from 0 to t, and substituting in (11e) we reduce system (11) 

to the following single integral equation 

J (t )= β
N

(S (0)− ∫
t−τ1−τ2

t

J (x)dx)( I (0)+∫
t−τ1

t

J (x)dx) . (14)

Stationary solutions of this equation can be found from the following algebraic equation:

J s=
β
N

(S (0)−(τ1+τ2)J s)(I (0)+τ1 J s) . (15)

The positive solution of this equation is given by the formula

J s=
−( N
β

+(τ1+τ2) I (0)−τ1S (0))+√Δ

2 τ1(τ1+τ2)
, (16)

where
Δ=( N

β
+(τ1+τ2) I (0)−τ1S (0))

2

+4 S (0) I (0)τ1(τ1+τ2) >0 . (17)
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If we consider                 and                 , then we find two approximate solutionsI (0)≈0 S (0)≈N

J s=0 , J s=
N
β τ1

β τ1−1

τ1+τ2

. (18)

Hence, there exists a positive stationary solution if ℜ0=β τ1>1.

In this case, we can determine the stationary values of susceptible, infected, and recovered as:

Ss=
N
β τ1

, I s=
N
β

β τ1−1

τ1+τ2

, Rs=N−Ss−I s . (19)
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2.3. Stability of the Stationary Solution 

Equation (14), linearized about the stationary solution, by setting                            and keeping 

the first-order terms with respect to    , has the following form

J (t)=J s+ϵeλ t

ϵ

v (t )=−a1 ∫
t−τ1−τ2

t

v (x)dx+a2 ∫
t−τ1

t

v (x)dx , (20)

where

a1=
β
N

( I (0)+ N
β

β τ1−1

τ1+τ2

) , a2=
β
N

(S (0)− N
β τ1

(β τ1−1)) . (21)
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Set                      Then, from  (20) we obtain  v(t)=eλ t .

λ=−a1(1−e−(τ1+τ2) λ)+a2(1−e−τ1 λ) . (22)



  

Clearly,              is a solution of Equation (22). We will study the existence of solutions of this 

equation with a positive real part, which determines the loss of stability of the stationary solution.

λ=0

In order to simplify this analysis, we set I(0)=0, S(0)=N in (21), so we get

a1=
β τ1−1

τ1+τ2

, a2=
1
τ1

.

Theorem 3. The following properties hold: 

● If ℜ0 > 1 and Js > 0, then equation (22) does not have nontrivial positive real solutions. 

● If ℜ0 > 1 and Js = 0, then equation (22) has exactly one positive real solution. If ℜ0 < 1, then this 
equation has only negative real solutions. 

● There exists some value ℜc > 1, for which equation (22) has a pure imaginary solution .

16



  

Figure 3.
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Figure 4.

Dependence of the amplitude and the period of outbreaks for model (11) on the disease transmission 
rate     for the initial conditions: β

N=105 , S (0)=N−I (0) , I (0)=10−4 , R (0)=V (0)=0 , τ2=150.

From Fig. 4, we conclude that lim
β→∞
T (β , τ1 , τ2)=τ1+τ2 , lim

β→∞
A (β , τ1 , τ2)=N ,

where T is the period of outbreaks and A is their amplitude. 
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3. Conclusions 
➢ In the first section of this talk, we develop epidemiological model with distributed recovery and 

death rates. 

➢ A disadvantage of this integro-differential model is that it is relatively complex and it requires the 

knowledge of distributed recovery and death rates which may not be available in the literature.

➢This model can be reduced to the conventional ODE model using the uniform distribution of 

recovery and death rates in time during disease duration, and to the DDE model using the Delta-

Dirac distribution.

➢ The point-wise delay model is quite simple, it has a clear biological meaning, and it is determined 

by main parameters (time delays: infectivity and disease durations) which can be easily estimated 

from the clinical data for each particular viral infection (or virus variant). 

➢Data of epidemic progression is better described in the delay model than in the ODE model.
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➢In the second section of this talk, we propose an epidemiological model based on delay differential 

equations with two time delays, representing the disease duration and the period of natural 

immunity.

➢The reduction in the delay model to an integral equation allows us to study stationary solutions of 

this model and their stability. A positive stationary solution appears for the basic reproduction 

number larger than 1. It loses its stability and leads to periodic oscillations if the basic reproduction 

number exceeds some critical value. We determine this critical value and the period of emerging 

oscillations.

➢An increase in the disease transmission rate increases the amplitude and decreases the period of the 

outbreaks. For a large value of it, the period of outbreaks approaches the sum of disease duration 

and the period of natural immunity.

20



  

References

[1] Ghosh, S.; Volpert, V.; Banerjee, M. An epidemic model with time delay determined by the 

disease duration. Mathematics 2022,10, 2561.

[2] Saade, M.; Ghosh, S.; Banerjee, M.; Volpert, V. An epidemic model with time delays 

determined by the infectivity and disease durations. Math. Biosci. Eng. 2023, 20, 12864–12888.

[3] Saade M.; Aniţa S.; Volpert V., Dynamics of persistent epidemic and optimal control of 

vaccination, Mathematics 11 (17) (2023) 3770.



  

Thank you for attention !
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