Investigation of a multi-group epidemiological model

Abdou Raouf Cheha Mohamed

S.M. Nikol'skii Mathematical Institute

Peoples' Friendship University of Russia - RUDN University

Moscow 2025

Problem Statement

- 1. Analysis of the model.
- 2. Reduction to the integral equations.
- 3. Stationary solutions of the integral equations.
- 4. Existence of positive stationary solution.
- 5. Stability of the stationary solutions.
- 6. Positivity of the Solutions $J_1(t)$ and $J_2(t)$.
- 7. Existence and uniqueness of Solutions
- 8. Numerical simulations.

Multi-group epidemic models

This type of models recognize that different people contribute to the spread of infection and are susceptible to its consequences in different ways.

It takes into account²:

- Age (children vs adults vs elderly),
- Social activity (number of contacts per day),
- Immune status (vaccinated vs unvaccinated),
- Geography (urban vs rural population),
- Presence of comorbidities.

²Britton T, Ball F, Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2, Science, 2020

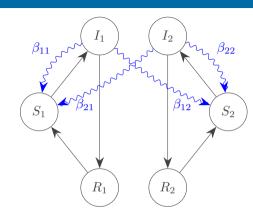
Multi-group epidemic model with time delay

$$\begin{cases}
\frac{dS_1(t)}{dt} = -J_1(t) + J_1(t - \tau_1 - \tau_2), \\
\frac{dS_2(t)}{dt} = -J_2(t) + J_2(t - \tau_1 - \tau_2), \\
\frac{dI_1(t)}{dt} = J_1(t) - J_1(t - \tau_1), \\
\frac{dI_2(t)}{dt} = J_2(t) - J_2(t - \tau_1), \\
\frac{dR_1(t)}{dt} = J_1(t - \tau_1) - J_1(t - \tau_1 - \tau_2), \\
\frac{dR_2(t)}{dt} = J_2(t - \tau_1) - J_2(t - \tau_1 - \tau_2).
\end{cases}$$
(1)

where τ_1 is disease duration, τ_2 is immunity duration, $J_1(t)$ and $J_2(t)$ are the numbers of newly infected in each group

$$J_1(t) = \frac{S_1(t)}{N} (\beta_{11} I_1(t) + \beta_{12} I_2(t))$$
 (1.1)

$$J_2(t) = \frac{S_2(t)}{N} (\beta_{21} I_1(t) + \beta_{22} I_2(t)). \tag{1.2}$$



 $\begin{aligned} & \text{transmission rates,} \\ & N = N_1 + N_2, \\ & N_1 = S_1(t) + I_1(t) + R_1(t), \\ & N_2 = S_2(t) + I_2(t) + R_2(t). \end{aligned}$

Here β_{11} , β_{12} , β_{21} , β_{22} are infection

Integral Equations

$$\begin{cases} \frac{dS_1(t)}{dt} = -J_1(t) + J_1(t - \tau_1 - \tau_2), \\ \frac{dS_2(t)}{dt} = -J_2(t) + J_2(t - \tau_1 - \tau_2), \\ \frac{dI_1(t)}{dt} = J_1(t) - J_1(t - \tau_1), \\ \frac{dI_2(t)}{dt} = J_2(t) - J_2(t - \tau_1), \\ \frac{dR_1(t)}{dt} = J_1(t - \tau_1) - J_1(t - \tau_1 - \tau_2), \\ \frac{dR_2(t)}{dt} = J_2(t - \tau_1) - J_2(t - \tau_1 - \tau_2). \end{cases}$$

Integrating these equations and using

$$J_1(t) = \frac{S_1(t)}{N} (\beta_{11}I_1(t) + \beta_{12}I_2(t)),$$

$$J_2(t) = \frac{S_2(t)}{N} (\beta_{21}I_1(t) + \beta_{22}I_2(t)),$$

we get equaivalent integral equations

$$\begin{cases}
J_{1}(t) = \frac{1}{N} \left(S_{10} - \int_{t-\tau_{1}-\tau_{2}}^{t} J_{1}(s) \, ds \right) \times \\
\times \left[\beta_{11} \left(I_{10} + \int_{t-\tau_{1}}^{t} J_{1}(s) \, ds \right) + \beta_{12} \left(I_{20} + \int_{t-\tau_{1}}^{t} J_{2}(s) \, ds \right) \right], \\
J_{2}(t) = \frac{1}{N} \left(S_{20} - \int_{t-\tau_{1}-\tau_{2}}^{t} J_{2}(s) \, ds \right) \times \\
\times \left[\beta_{21} \left(I_{10} + \int_{t-\tau_{1}}^{t} J_{1}(s) \, ds \right) + \beta_{22} \left(I_{20} + \int_{t-\tau_{1}}^{t} J_{2}(s) \, ds \right) \right].
\end{cases} (1.3)$$

Here $S_{10} = S_1(0)$, $I_{10} = I_1(0)$, $I_{20} = I_2(0)$, $S_{20} = S_2(0)$.

Stationary solutions of integral equations can be found much easier!

Stationary Solutions

For stationary solutions J_{1s} and J_{2s} integral equations have the following form :

$$J_{1s} = \frac{1}{N} [S_{10} - J_{1s}(\tau_1 + \tau_2)] [\beta_{11}(I_{10} + J_{1s}\tau_1) + \beta_{12}(I_{20} + J_{2s}\tau_1)],$$

$$J_{2s} = \frac{1}{N} [S_{20} - J_{2s}(\tau_1 + \tau_2)] [\beta_{21}(I_{10} + J_{1s}\tau_1) + \beta_{22}(I_{20} + J_{2s}\tau_1)].$$

Using assumptions $I_{10} \ll J_{1s}\tau_1$, $I_{20} \ll J_{2s}\tau_2$ and $S_{10} \approx N_1$, $S_{20} \approx N_2$, we can rewrite the previous equations:

$$J_{1s} = \frac{1}{N} (N_1 - J_{1s}(\tau_1 + \tau_2))(\beta_{11}J_{1s}\tau_1 + \beta_{12}J_{2s}\tau_1), \tag{2}$$

$$J_{2s} = \frac{1}{N} (N_2 - J_{2s}(\tau_1 + \tau_2))(\beta_{21} J_{1s} \tau_1 + \beta_{22} J_{2s} \tau_1).$$
 (3)

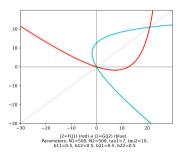
The system of equations (2)–(3) has a trivial solution (0,0).

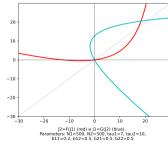
Are there any other solutions?

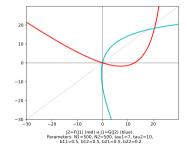
Existence of positive stationary solution

We can express J_{1s} from (3) and J_{2s} from (2), then we have

$$J_{2s} = \underbrace{\left(\frac{J_{1s}N}{N_1 - J_{1s}(\tau_1 + \tau_2)} - \beta_{11}J_{1s}\tau_1\right)\frac{1}{\beta_{12}\tau_1}}_{F(J_{1s})}, \quad J_{1s} = \underbrace{\left(\frac{J_{2s}N}{N_2 - J_{2s}(\tau_1 + \tau_2)} - \beta_{22}J_{2s}\tau_1\right)\frac{1}{\beta_{21}\tau_1}}_{G(J_{2s})}.$$







Basic reproduction number

Thus, we can introduce basic reproduction number for our model:

$$\mathcal{R}_0 = \max_{i=1,2,3} \left\{ R_i \right\},\,$$

where

$$R_1 = \beta_{11}\tau_1 \frac{N_1}{N}, \qquad R_2 = \beta_{22}\tau_1 \frac{N_2}{N}, \qquad R_3 = \frac{\frac{N_1}{N}\beta_{11}\tau_1 + \frac{N_2}{N}\beta_{22}\tau_1 + \beta_{12}\beta_{21}\tau_1^2 \frac{N_1N_2}{N^2}}{1 + \beta_{12}\beta_{21}\tau_1^2 \frac{N_1N_2}{N^2}}.$$

Theorem

The system (2)-(3) has a positive solution if $\mathcal{R}_0 > 1$.

If $\mathcal{R}_0 < 1$ The system (2)–(3) does not have positive solutions.

Stability of the stationary solutions

We linearize integral equations with respect to the stationary solution (J_{1s}, J_{2s}) . Substituting instead of $J_1(t)$ and $J_2(t)$ the expressions $J_{1s} + \nu(t) - J_{2s} + \omega(t)$:

$$\nu(t) = a_1(J_{1s}) \int_{t-\tau_1}^{t} \nu(s) \, ds + a_2(J_{1s}) \int_{t-\tau_1}^{t} \omega(s) \, ds - a_3(J_{1s}, J_{2s}) \int_{t-\tau_1-\tau_2}^{t} \nu(s) \, ds.$$

$$\omega(t) = b_1(J_{2s}) \int_{t-\tau_1}^{t} \nu(s) \, ds + b_2(J_{2s}) \int_{t-\tau_1}^{t} \omega(s) \, ds - b_3(J_{1s}, J_{2s}) \int_{t-\tau_1-\tau_2}^{t} \omega(s) \, ds$$

$$a_1(J_{1s}) = \frac{\beta_{11}}{N} (N_1 - J_{1s}(\tau_1 + \tau_2)), \qquad b_1(J_{2s}) = \frac{\beta_{21}}{N} (N_2 - J_{2s}(\tau_1 + \tau_2)),$$

$$a_2(J_{1s}) = \frac{\beta_{12}}{N} (N_1 - J_{1s}(\tau_1 + \tau_2)), \qquad b_2(J_{2s}) = \frac{\beta_{22}}{N} (N_2 - J_{2s}(\tau_1 + \tau_2)),$$

$$a_3(J_{1s}, J_{2s}) = \frac{[\beta_{11}J_{1s}\tau_1 + \beta_{12}J_{2s}\tau_1]}{N}, \quad b_3(J_{1s}, J_{2s}) = \frac{[\beta_{21}J_{1s}\tau_1 + \beta_{22}J_{2s}\tau_1]}{N}.$$

Stability of the stationary solutions

Let $\nu(t) = pe^{\lambda t}$ and $\omega(t) = qe^{\lambda t}$. Substituting these expressions into (4)–(5), calculating the integrals and reducing by $e^{\lambda t}$, we obtain:

$$\begin{cases}
p\lambda = pa_1(1 - e^{-\tau_1\lambda}) + qa_2(1 - e^{-\tau_1\lambda}) - pa_3(1 - e^{-(\tau_1 + \tau_2)\lambda}), \\
q\lambda = pb_1(1 - e^{-\tau_1\lambda}) + qb_2(1 - e^{-\tau_1\lambda}) - qb_3(1 - e^{-(\tau_1 + \tau_2)\lambda}).
\end{cases} (6)$$

Clearly, $\lambda = 0$ is a solution of the system (6).

Are there any positive solutions?

Stability of the stationary solutions

System (6) can be rewritten in the following form:

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

where

$$c_{11} = a_1(1 - e^{-\tau_1 \lambda}) - a_3(1 - e^{-(\tau_1 + \tau_2)\lambda}) - \lambda, \qquad c_{12} = a_2(1 - e^{-\tau_1 \lambda}),$$

$$c_{21} = b_1(1 - e^{-\tau_1 \lambda}), \qquad c_{22} = b_2(1 - e^{-\tau_1 \lambda}) - b_3(1 - e^{-(\tau_1 + \tau_2)\lambda}) - \lambda.$$

The system has a nontrivial solution if $\Delta = c_{11}c_{22} - c_{21}c_{12} = 0$. In other words,

$$\left[a_1(1 - e^{-\tau_1 \lambda}) - a_3(1 - e^{-(\tau_1 + \tau_2)\lambda}) - \lambda\right] \left[b_2(1 - e^{-\tau_1 \lambda}) - b_3(1 - e^{-(\tau_1 + \tau_2)\lambda}) - \lambda\right] - \left[a_2(1 - e^{-\tau_1 \lambda})\right] \left[b_1(1 - e^{-\tau_1 \lambda})\right] = 0$$

Stability of the trivial stationary solution

Theorem

If $\mathcal{R}_0 > 1$, then there exists a positive real solution λ of

$$\left[a_1 (1 - e^{-\tau_1 \lambda}) - a_3 (1 - e^{-(\tau_1 + \tau_2)\lambda}) - \lambda \right] \left[b_2 (1 - e^{-\tau_1 \lambda}) - b_3 (1 - e^{-(\tau_1 + \tau_2)\lambda}) - \lambda \right] - \left[a_2 (1 - e^{-\tau_1 \lambda}) \right] \left[b_1 (1 - e^{-\tau_1 \lambda}) \right] = 0$$

If $\mathcal{R}_0 < 1$ then previous equation does not have positive solutions.

Positivity of the Solutions $J_1(t)$ and $J_2(t)$

Consider the system of integral equations (1.3).

Remark

If $I_{10} = I_{20} \equiv 0$, then from (1.1), (1.2) it is easy to see that $J_1(t) = J_2(t) \equiv 0$ is the trivial solution of the system (1.3).

Hereafter, we will assume that the following holds:

- (i) $S_{10}, S_{20}, I_{10}, I_{20} > 0$
- (ii) $I_1(t) = I_2(t) = 0$ for t < 0, this means that $J_1(t) = J_2(t) = 0$ for t < 0
- (iii) $\beta_{ij} > 0$
- (iv) $\tau_1, \tau_2 > 0$
- (v) $N = S_{10} + S_{20} + I_{10} + I_{20} + R_{10} + R_{20}$
- (vi) The functions $J_1(t)$ and $J_2(t)$ are continuous for positive t. Is this true?

Existence and uniqueness of Solutions

Set $\theta = \tau_1 + \tau_2$ and denote by $(S_{1,n}, S_{2,n}, I_{1,n}, I_{2,n}, R_{1,n}, R_{2,n})$ the restriction of the solution $(S_1, S_2, I_1, I_2, R_1, R_2)$ to the interval $[(n-1)\theta, n\theta]$, where $n \in \mathbb{N}$. If $t \in [(n-1)\theta, n\theta]$, where $n \in \mathbb{N}$, then $t - \theta \in [(n-2)\theta, (n-1)\theta]$ and the functions $J_1(t-\theta) = \phi_n^1(t), J_2(t-\theta) = \phi_n^2(t)$ are called the *history functions* for $J_1(t), J_2(t)$. For $t \in [(n-1)\theta, n\theta]$, system (1) takes the form:

$$\frac{dS_1(t)}{dt} = -J_1(t) + \phi_n^1(t),$$

$$\frac{dS_2(t)}{dt} = -J_2(t) + \phi_n^2(t),$$

$$\frac{dI_1(t)}{dt} = J_1(t) - J_1(t - \tau_1),$$

$$\frac{dI_2(t)}{dt} = J_2(t) - J_2(t - \tau_1),$$

$$\frac{dR_1(t)}{dt} = J_1(t - \tau_1) - \phi_n^1(t),$$

$$\frac{dR_2(t)}{dt} = J_2(t - \tau_1) - \phi_n^2(t),$$

Existence and uniqueness of Solutions

where

$$\phi_n^1(t) = \frac{S_1(t-\theta)}{N} \left(\beta_{11}I_1(t-\theta) + \beta_{12}I_2(t-\theta)\right)$$

and

$$\phi_n^2(t) = \frac{S_2(t-\theta)}{N} \left(\beta_{21} I_1(t-\theta) + \beta_{22} I_2(t-\theta)\right).$$

$$\hat{\Sigma}_n = \left\{ (S_1, S_2, I_1, I_2, R_1, R_2) \in (\Sigma_n)^6 : \phi_n^1(t) \ge 0, \phi_n^2(t) \ge 0, \forall t \in [(n-1)\theta, n\theta] \right\},\,$$

where Σ_n is defined as

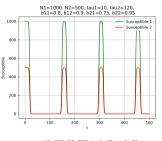
$$\Sigma_n = \{T_n \in C([(n-1)\theta, n\theta]) : 0 \le T_n(t) \le N, \forall t \in [(n-1)\theta, n\theta]\}.$$

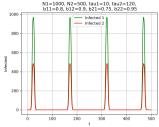
We formulate the following theorem.

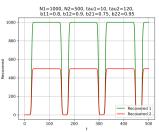
Theorem

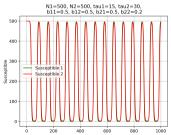
If there exists a unique solution $(S_{1,n-1}, S_{2,n-1}, I_{1,n-1}, I_{2,n-1}, R_{1,n-1}, R_{2,n-1})$ of system (1) in the domain $\hat{\Sigma}_{n-1}$, then system (1) will have a unique solution $(S_{1,n}, S_{2,n}, I_{1,n}, I_{2,n}, R_{1,n}, R_{2,n})$ in the domain $\hat{\Sigma}_n$.

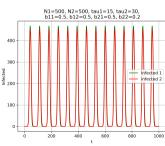
Numerical simulations

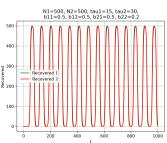




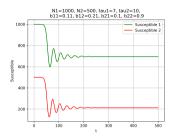


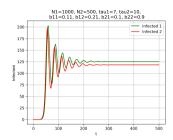


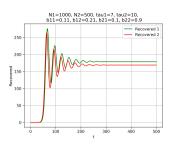


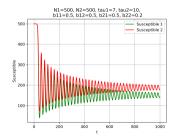


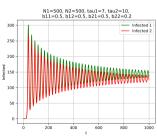
Numerical simulations

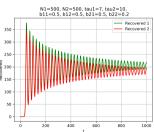




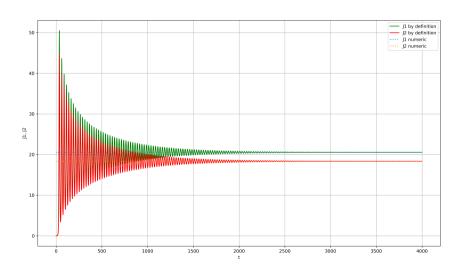








Numerical simulations



Sources and References

- □ Saade, M.; Anita, S.; Volpert, V. Dynamics of Persistent Epidemic and Optimal Control of Vaccination. *Mathematics* 2023, 11, 3770.
- □ Samiran Ghosh, Vitaly Volpert, and Malay Banerjee. An epidemic model with time-distributed recovery and death rates. *Bulletin of Mathematical Biology*, 84(8):78, 2022.
- □ Samiran Ghosh, Vitaly Volpert, and Malay Banerjee. An epidemic model with time delay determined by the disease duration. *Mathematics*, 10(15):2561, 2022.

THANK YOU FOR YOUR ATTENTION!