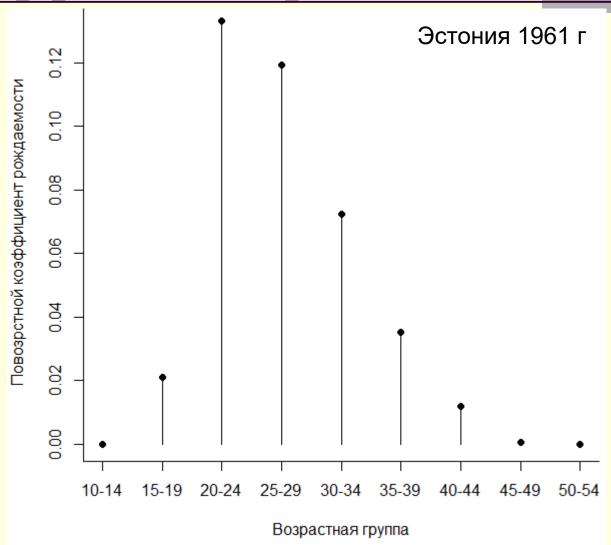

Решение задачи декомпозиции агрегированных данных в медицине и демографии

д.б.н., к.т.н. Михальский А.И., *Институт проблем управления им. В.А. Трапезникова РАН, Москва*


XVII конференция «Математические модели и численные методы в биологии и медицине» ИВМ 2025

Оценка числа случаев заболевания по сгруппированным данным

Denmark 2002-2006 Testis

Задача 1. Оценка повозрастного коэффициента рождаемости

Оценка повозрастного коэффициента рождаемости *fr*

$$||F \times fr||^2 \to \min$$

$$G \times fr - b = 0$$

$$fr_j \ge 0, \ j = 1,...,n$$

n — число однолетних групп

m — число пятилетних групп

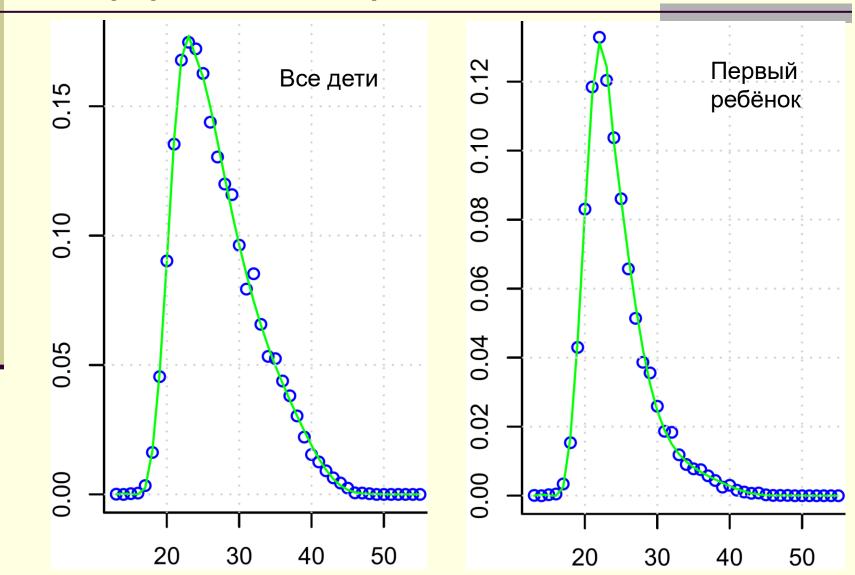
- F матрица $(n-2)_{*}n$ с элементами $F_{i,i}$ =1; $F_{i,i+1}$ =-2; $F_{i,i+2}$ =1;
- G матрица *m*_∗*n* с элементами число женщин способных рожать в заданном возрасте из заданной пятилетней возрастной группы
- b вектор из m элементов зафиксированное число рождений в пятилетних возрастных группах

Оценка повозрастного коэффициента рождаемости по порядку рождения f_r^p

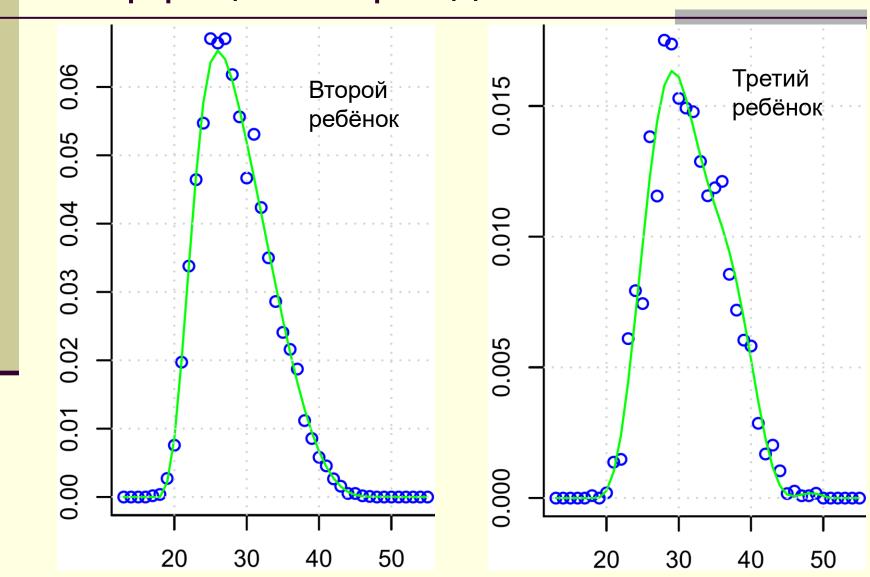
$$||F \times fr||^{2} + \sum_{p=1}^{5} ||F \times fr^{p}||^{2} \rightarrow \min$$

$$G \times fr - b = 0$$

$$G^{p} \times fr^{p} - b^{p} = 0, p = 1,...,5$$

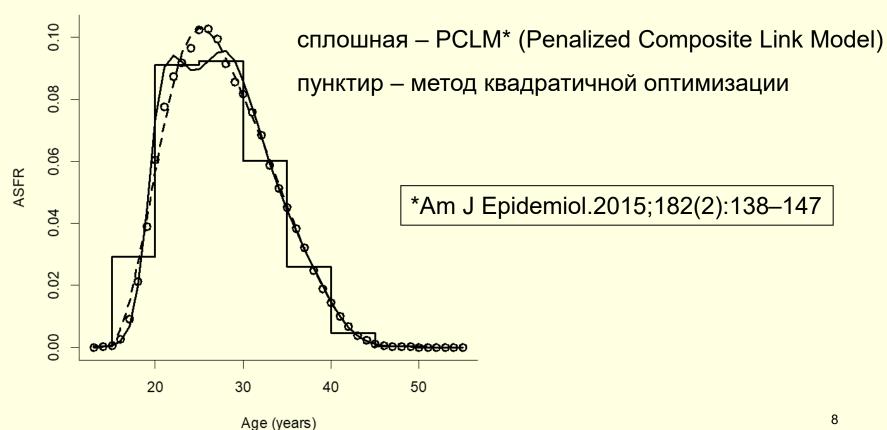

$$E_{j} \times fr_{j} - \sum_{p=1}^{5} E_{j}^{p} \times fr_{j}^{p} = 0, j = 1,...,n$$

$$fr_{j} \ge 0$$

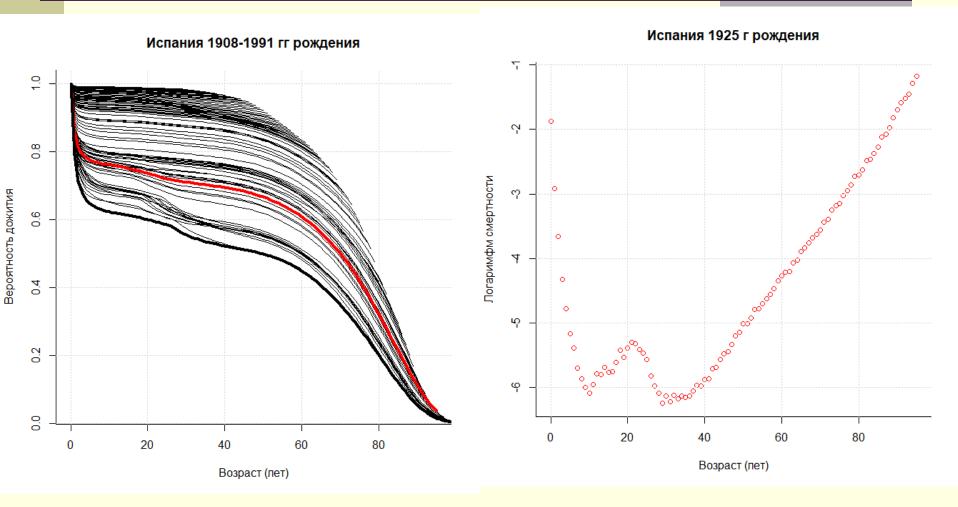

$$fr_{j}^{p} \ge 0$$

- G^p матрица m_xn с элементами число женщин способных рожать в заданном возрасте из заданной пятилетней возрастной группы p-го ребёнка
- b^p вектор из *т* элементов зафиксированное число рождений в пятилетних возрастных группах *р-ых* детей
- E_j число женщин из j-ой однолетней группы, способных рожать
- Е^р число женщин из *j*-ой однолетней группы, родивших *p*-1 ребёнка

Эстония 1961г. Оценка повозрастного коэффициента рождаемости



Эстония 1961г. Оценка повозрастного коэффициента рождаемости



Сравнение двух методов оценки повозрастного коэффициента рождаемости

Задача 2. Декомпозиция кривой смертности $\mu(x) = \frac{d}{dx} S(x) / S(x)$

Модели кривой смертности

- Модель Гомпертца (1825)
- Модель Гомпертца-Мейкхема (1867)
- Смертность в гетерогенной популяции (1985)

$$\mu_G(x) = \alpha \exp(\gamma x)$$

$$\mu_{GM}(x) = b + \alpha \exp(\gamma x)$$

$$\mu_H(x) = \int \mu(z, x) dP(z)$$

х – возраст

z - уязвимость

Гетерогенность факторов риска

В статье (Anderson J.J. et al. 2017) предлагается разделение факторов, влияющих на смертность, на три компонента:
□ факторы, определяющие изменение жизнеспособности с возрастом (старение),
□ внешние факторы, непосредственно ведущие к смерти (несчастные случаи),
□ внешние факторы, ведущие к потере здоровья (хронические заболевания).

Anderson J.J., David T.Li., Sharrow J. Insights into mortality patterns and causes of death through a process point of view model // Biogerontology. – 2017. – Vol. 18. – P. 149–170.

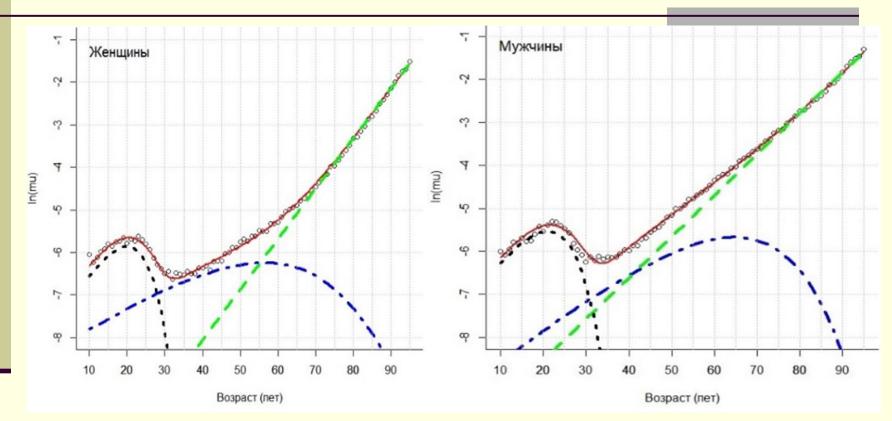
Модель смертности с учётом гетерогенности факторов риска

Смертность в каждой из групп факторов смерти

$$\mu_i(t) = \alpha_i \exp(\gamma_i t), \quad i = 1, 2, 3.$$

Кумулятивный риск в группе факторов смерти

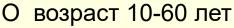
$$H_j(t) = \int_0^t \mu_j(\tau) d\tau.$$

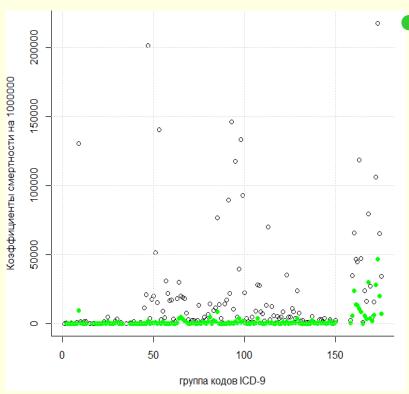

Распределение популяции возраста t по группам факторов смерти

$$p_{j}(t) = p_{j}(0) \exp(-H_{j}(t)) \left[\sum_{i=1}^{3} p_{i}(0) \exp(-H_{i}(t)) \right], \quad j = 1,2,3,$$

Общая смертность в популяции

$$\mu_H(t) = \sum_{i=1}^{3} p_i(t) \mu_i(t) = \sum_{i=1}^{3} p_i(t) \alpha_i \exp(\gamma_i t)$$


Результат моделирования. Испания, когорта 1925 года рождения


- О эмпирические данные смертности
- общая смертность по модели
- - преждевременная смертность по модели
- отложенная смертность по модели
- - возрастная смертность по модели

Факторы преждевременной смерти

1959-1988 гг, оба пола, Россия



группа	Описание
кодов	
ICD-9	
173	Самоубийство и самоповреждение
168	Случайное утопление и погружение в воду
172	Другие несчастные случаи
160	Несчастные случаи, связанные с
	мототранспортом
174	Убийства и преднамеренные повреждения,
	нанесенные другим лицом и
	предусмотренные законом вмешательства
162	Автомототранспортные несчастные случаи
161	Автомототранспортный несчастный случай
	на общественной дороге в результате наезда
	на пешехода
163	Случайные отравления алкоголем

Распространённость групп факторов смерти Испания 1925 год рождения

Что будет если устранить факторы риска преждевременной смерти?

Продолжительность жизни по дожитии до 10 лет при устранении различных факторов риска Испания когорта 1925 года рождения

	e ₁₀	Без хронических заболеваний	Без преждевременной смерти	Только по старости
Женщины	70.1	72.8	72.6	75.7
Мужчины	63.3	65.2	66.7	69.2

Добавка лет жизни при устранении различных факторов риска

Испания когорта 1925 года рождения

	Без хронических заболеваний	Без преждевременной смерти	По старости
Женщины	2.7	2.5	5.6
Мужчины	1.9	3.4	5.9

Стратегия устранения факторов риска преждевременной смерти ведёт к увеличению продолжительности жизни, соизмеримому с устранением хронических заболеваний среди женщин,

а среди мужчин – почти в два раза больше!

Спасибо за внимание

ipuran@yandex.ru