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Introduction 
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Autocatalysis plays a pivotal role in evolutionary processes, as 
reactions catalyzed by their own products gain a selective 
advantage over those requiring external catalysts. This self-
enhancing mechanism is fundamental to the emergence and 
sustainability of complex biochemical networks. 
 
Building upon Turing’s seminal work on morphogenesis 
numerous studies have demonstrated that linear diffusion can 
induce significant changes in system behavior. For instance,  
S. Smile has been shown that two asymptotically stable four-
dimensional systems, when coupled via linear diffusion, can 
give rise to a stable limit cycle, irrespective of initial conditions.  

Paradox:  If takes four asymptotically 
stable dynamics system connected by 
linear diffusion then passible obtain 

oscillation system in the form of limit 
cycle  
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Consider a system comprising 𝑛𝑛 chemical or biological macromolecules 𝑀𝑀𝑖𝑖, 𝑖𝑖 = 1, 2, … ,𝑛𝑛 with populations 𝑁𝑁𝑖𝑖(𝑡𝑡) as time 𝑡𝑡. 
The dynamics of these populations can be described by the autocatalytic equations 

   
𝑑𝑑𝑁𝑁𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑 = 𝑟𝑟𝑖𝑖𝑁𝑁𝑖𝑖2 𝑡𝑡 ,  𝑁𝑁𝑖𝑖 0 = 𝑁𝑁𝑖𝑖0, 𝑖𝑖 = 1, 2, … , 𝑛𝑛 

Here 𝑟𝑟𝑖𝑖 are quantities characterizing the rate of autocatalysis. By transitioning from absolute numbers to relative 
frequencies, we obtain the following equalities: 

𝑢𝑢𝑖𝑖 𝑡𝑡 =
𝑁𝑁𝑖𝑖(𝑡𝑡)

∑ 𝑁𝑁𝑘𝑘(𝑡𝑡)𝑛𝑛
𝑘𝑘=1

, �𝑢𝑢𝑖𝑖 𝑡𝑡 = 1
𝑛𝑛

𝑖𝑖=1
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Then we obtain replicator system: The solution is considered on the simplex 𝑆𝑆𝑛𝑛: 

𝑑𝑑𝑢𝑢𝑖𝑖
𝑑𝑑𝑑𝑑    = 𝑢𝑢𝑖𝑖 𝑟𝑟𝑖𝑖𝑢𝑢𝑖𝑖 − 𝑓𝑓 𝑢𝑢 , 𝑓𝑓 𝑢𝑢 =  �𝑟𝑟𝑘𝑘𝑢𝑢𝑘𝑘2

𝑛𝑛

𝑘𝑘=1

,          

𝑢𝑢𝑖𝑖 0 = 𝑢𝑢𝑖𝑖0 ≥ 0,                 𝑖𝑖 = 1, 2, … ,𝑛𝑛 

𝑆𝑆𝑛𝑛 =  𝒖𝒖 ∈ ℝ𝑛𝑛,𝒖𝒖 ≥ 0,�𝑢𝑢𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 1  

The dynamics of system have been extensively 
analyzed in previous studies. The phase portraits of this 
system depict trajectories originating from center of 
the simplex  𝑆𝑆𝑛𝑛. These trajectories sequentially 
traverse the centers of lower-dimensional simplices-
specifically, from 𝑆𝑆𝑛𝑛−1 to 𝑆𝑆𝑛𝑛−2, and so forth-until they 
converge at vertex 𝑝𝑝𝑘𝑘 of the simplex 𝑆𝑆𝑛𝑛 



Problem Statement 
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Consider an autocatalytic replicator system comprising 𝑛𝑛 species, where interactions occur through the 
exchange of various macromolecules via linear diffusion. The dynamics of the population 𝑣𝑣𝑖𝑖(𝑡𝑡) of species 
𝑀𝑀𝑖𝑖 are governed by equations on the simplex 𝑆𝑆𝑛𝑛: 

(1) 



Analysis of Equilibrium Points 
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First, we note that the existence, nature, and number of equilibrium points distinct from 𝑀𝑀0 require separate 
investigation, even in the simplest case where 𝜇𝜇𝑖𝑖𝑗𝑗 = 𝜇𝜇 for all 𝑖𝑖 ≠ 𝑗𝑗, with 𝑖𝑖, 𝑗𝑗 = 1, 2, … ,𝑛𝑛   
 
We begin with the following result: 

(2) 



General Case: 𝜇𝜇𝑖𝑖𝑖𝑖 ≠ 𝜇𝜇0, 𝑖𝑖, 𝑗𝑗 = 1, 2, … ,𝑛𝑛 
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The solvability of the nonlinear system: 

Is determined by the non-vanishing of the Jacobian determinant: 

Further analysis confirms that these conditions are satisfied for all parameter regimes examined in this study. 



Investigation of Symmetric Equilibrium  
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Results of Numerical Modeling 1 
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Results of Numerical Modeling 2 
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Results of Numerical Modeling 3 
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Results of Numerical Modeling 4 
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Main Hypothesis 
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Let us now consider the obtained results in the context of the system’s potential for further evolution after reaching a limiting 
state. When condition (3) holds, the system’s trajectories converge asymptotically to the symmetric equilibrium point 
𝑀𝑀0 = (1

𝑛𝑛
, 1
𝑛𝑛

, … , 1
𝑛𝑛

), independent if initial conditions. This scenario, characterized by uniformity, is not interest from an 
evolutionary perspective, as it implies a lack of diversification. 
 
In contrast, under multistable (adaptive) dynamics, the long-term behavior of the system depends on the initial data. In this 
case, the limiting state comprises a set of non-degenerate, stable equilibria 𝑀𝑀1

+(𝑛𝑛). Due to symmetry, when initial conditions 
are uniformly distributed over the simplex, the probability of converging to any particular point in 𝑀𝑀1

+(𝑛𝑛) is 1
𝑛𝑛

. 
 
Assuming a sufficiently large number of independent realizations with varied initial conditions, each of the macromolecules 
corresponding to points in 𝑀𝑀1

+ 𝑛𝑛  can appear in the limiting states. Since these equilibria have distinct frequency distributions, 
the set 𝑀𝑀1

+(𝑛𝑛) can be interpreted as a pool of potential macromolecular types capable of engaging in new interactions in 
subsequent replicator systems. Hence, multistability provides a foundation for the evolutionary expansion of macromolecular 
systems. 



Testing of Main Hypothesis (1/2) 
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To illustrate this, let us revisit Example 4 (𝑛𝑛 = 7, 𝜇𝜇 = 0.03). In this case, the seven stable nodes from the 
set 𝑀𝑀1

+ 7  each have one coordinate equal to 0.7645 and six coordinates equal to 0.0392. 
 
Now consider a hypercyclic replicator system of the same dimensionality, described by the following 
system of equations:  



Testing of Main Hypothesis (2/2) 
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In contrast to the frozen limiting dynamics of autocatalysis, this hypercyclic system has a much more complex behavior, 
characterized by the formation of a stable limit cycle. Moreover,  the hypercycle satisfies the requirements of Darwin’s 
triad: variability, heritability, and differential fitness. Numerical implementation of the dynamics of system with 𝜈𝜈 = 0.0025 
shows that the points of the set 𝑀𝑀1

+ 7  belong to the limit cycle of system (4).   

This finding supports the hypothesis that 
macromolecules produced through multistable 
dynamics in interacting autocatalytic systems can 
engage in interactions within more complex replicator 
systems. In summary, the adaptive behavior observed 
in interacting autocatalytic systems can be viewed as 
an initial evolutionary step towards the development 
of more sophisticated replicator systems, such as the 
hypercycle. 
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