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Introduction

Autocatalysis plays a pivotal role in evolutionary processes, as
reactions catalyzed by their own products gain a selective
advantage over those requiring external catalysts. This self-
enhancing mechanism is fundamental to the emergence and
sustainability of complex biochemical networks.

Building upon Turing’s seminal work on morphogenesis
numerous studies have demonstrated that linear diffusion can
induce significant changes in system behavior. For instance,

S. Smile has been shown that two asymptotically stable four-
dimensional systems, when coupled via linear diffusion, can
give rise to a stable limit cycle, irrespective of initial conditions.

Paradox: If takes four asymptotically
stable dynamics system connected by
linear diffusion then passible obtain
oscillation system in the form of limit
cycle
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Autocatalytic Replicator System (1/2)

Consider a system comprising n chemical or biological macromolecules M;, i = 1, 2, ..., n with populations N;(t) as time t.
The dynamics of these populations can be described by the autocatalytic equations

dN;(t
dlf ) = 1N/ (¢), N;(0) = N?, i=12 .1

Here 1; are quantities characterizing the rate of autocatalysis. By transitioning from absolute numbers to relative
frequencies, we obtain the following equalities:

w1 (8) = 0 N i) = 1

Zlek(t), i=1



Autocatalytic Replicator System (2/2)

Then we obtain replicator system: The solution is considered on the simplex S,,:
n
s, = emuz0) w1
i=1
(0,1,0)

The dynamics of system have been extensively

analyzed in previous studies. The phase portraits of this
system depict trajectories originating from center of
the simplex §,,. These trajectories sequentially
traverse the centers of lower-dimensional simplices-
specifically, from §,,_; to S,,_,, and so forth-until they
converge at vertex p, of the simplex S,

(1,0,0)




Problem Statement

Consider an autocatalytic replicator system comprising n species, where interactions occur through the
exchange of various macromolecules via linear diffusion. The dynamics of the population v;(t) of species
M; are governed by equations on the simplex S,,;:

dﬁﬁf) (’1* —Z g)JFZw( ’Ui)= vi(0) =v) 20, i=12...,n ()

k=1
J#z

n n
Z Z Fkj (Uj o Uk‘) = 0, HEki = ik

k=1 j=1,
JF£k



Analysis of Equilibrium Points

First, we note that the existence, nature, and number of equilibrium points distinct from M, require separate
investigation, even in the simplest case where Uij = U foralli #j,withi,j=1,2,..,n

We begin with the following result:
Theorem Let pjj=p, i#j i,j=12,....n.
If the inequality holds:

1
0 —_— =1 B IS | 2
<#'< 43(?1_3)1 § 1 3 1” 1 ( )

then the set of critical points of system (1) J\Jf (n) € intS,, has coordinates:

1
+ + + +
Uiy SV = =Y, =5 (1 + /1 — 4s(n — sj,u) # uy,
+ 1 SU—,:;; . . .
e . JFitig,... i, s=1,2,...,n—1
J n—s
If the condition holds:
i |
o T K
= dn—1)

then system (1) has no critical points other than the point My = (%, %, i

3=
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General Case: p;; # poi,j=1,2,..,n

The solvability of the nonlinear system:

Fi(v,p) = v (’L‘z — f(“b‘)) + Z Jij (’I.Tj = ’L‘i) . e S T e
J=1,
JFi

Is determined by the non-vanishing of the Jacobian determinant:

_d(F,...,F,)

J ]
d(vy,...,0n)

at pp = (FLU:“*HUJD) and -F%(i'?sﬁﬂ) =0, =12,...,n

Further analysis confirms that these conditions are satisfied for all parameter regimes examined in this study.



Investigation of Symmetric Equilibrium

Theorem Let the condition hold: ]
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Then the equilibrium point Mo = ( ) is an asymptotically stable node.



Results of Numerical Modeling 1

Let n =4, p = 0.05. In this case, inequality (2) holds for both s =1 and s = 2.

If s = 1, then the four critical points of the set M, (4) have one coordinate equal to 0.8162, and the
remaining coordinates equal to 0.0612. The four critical points of the set M (4) have one coordinate
equal to 0.1837, and the remaining coordinates equal to 0.2721.

If s = 2, then the critical points of the sets My (4) and My (4) coincide and have two coordinates
equal to 0.3618, and the remaining coordinates equal to 0.1381.

1.00 - ® Equilbrium point (s=2)

@ Equilibrium point (s=1)

0.50

Thus, the total number of critical points (excluding the point Mp) is 12.
Figure shows the phase portrait of the system. The phase trajectories

0.25 1

‘from the unstable nodeat point Mg spread over the simplex and, through a
network of saddle points from the sets M (4) and .Mgi (4), concentrate

depending on the initial data at the points of the set M (4).
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Results of Numerical Modeling 2

1

1
Let n = 4 with 1 = 0.07. In this case, the value of j lies between 16 and 12 Therefore,

the equilibrium point My is stable. Inequality (2) holds only for s = 1.

The set M f (4) consists of four points with one coordinate equal to 0.7, and the remaining coordi-
nates equal to 0.1, while the set M (4) consists of four points with one coordinate equal to 0.3, and
the remaining coordinates equal to 0.2333. The total number of critical points in this case (excluding
the point Mj) is 8.

® Equilibrium poirt (s=1)
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Results of Numerical Modeling 3

Let n = 7 with p = 0.01. In this case, inequality (2) holds for s = 1,2,3,4. The total number
of critical points is 56 (excluding the point Mjp). Of these, only the points from the set
M (7) are stable.
Figure shows the phase portrait of the svstem. As in the case of example 1 . the phase
trajectories starting from the unstable node My, depending on the initial data, through a complex
network of saddles, converge to the points from the set M; (7).

1.00 1 @ Equilbrium point (s= 1)

@ Equilbrium poirt (5= 2}
Equilibrium poirt (5= 3)

0.23 4
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Results of Numerical Modeling 4

1 1
Let n = 7 with o = 0.03. In this case, the value of u lies between 1 and 2" Therefore,

the equilibrium point My is a stable node. lnequality (2) holds only for s = 1.

As in the case of example 2 , the separatrices of the saddle points from the set M, (7) separate
the basin of attraction of the stable node My and the basins of attraction of the attractors from the
set M (7)

1.00 A ® Equilibrium poink (s=1)
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Main Hypothesis

Let us now consider the obtained results in the context of the system’s potential for further evolution after reaching a limiting
state. When condition (3) holds, the system’s trajectories converge asymptotically to the symmetric equilibrium point

1 1 1 . e o : : . : o :
M, = (Z’Z’ ...,;), independent if initial conditions. This scenario, characterized by uniformity, is not interest from an
evolutionary perspective, as it implies a lack of diversification.

In contrast, under multistable (adaptive) dynamics, the long-term behavior of the system depends on the initial data. In this
case, the limiting state comprises a set of non-degenerate, stable equilibria M; (n). Due to symmetry, when initial conditions

are uniformly distributed over the simplex, the probability of converging to any particular point in M;" (n) is %

Assuming a sufficiently large number of independent realizations with varied initial conditions, each of the macromolecules
corresponding to points in M (n) can appear in the limiting states. Since these equilibria have distinct frequency distributions,
the set M; (n) can be interpreted as a pool of potential macromolecular types capable of engaging in new interactions in
subsequent replicator systems. Hence, multistability provides a foundation for the evolutionary expansion of macromolecular
systems.




Testing of Main Hypothesis (1/2)

To illustrate this, let us revisit Example 4 (n = 7, u = 0.03). In this case, the seven stable nodes from the
set M (7) each have one coordinate equal to 0.7645 and six coordinates equal to 0.0392.

Now consider a hypercyclic replicator system of the same dimensionality, described by the following
system of equations:

du;t(t) = w; (’wi—l - f{u)) + 1 zﬂj (U”j - u"ﬂ')’ 6 dyBpmnnnly
2 g
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Testing of Main Hypothesis (2/2)

In contrast to the frozen limiting dynamics of autocatalysis, this hypercyclic system has a much more complex behavior,
characterized by the formation of a stable limit cycle. Moreover, the hypercycle satisfies the requirements of Darwin’s
triad: variability, heritability, and differential fitness. Numerical implementation of the dynamics of system with v = 0.0025
shows that the points of the set M (7) belong to the limit cycle of system (4).

L.00

0.75 4

This finding supports the hypothesis that
macromolecules produced through multistable
dynamics in interacting autocatalytic systems can
engage in interactions within more complex replicator
systems. In summary, the adaptive behavior observed

0.25 1

0.00 4

in interacting autocatalytic systems can be viewed as
an initial evolutionary step towards the development
of more sophisticated replicator systems, such as the
hypercycle.
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—0.50 -
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Phase trajectaries of a 3
Tth-order hypercyclical system

—0.75 A

The equilibrium point of the
—1.001 ® autocatalytic system of the Tth order
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