Параметризация функций управления в задаче моделирования терапии ВИЧ-инфекции

Гребенников Д.С. 1,2 . Лыфенко А.И. 3 . Тимохин А.М. 2

¹ URM PAH

 2 ПМГМV

3 BMK MEV

XVII конференция «Математические модели и численные методы в биологии и медицине» ИВМ РАН 16 октября 2025

Работа выполнена при поддержке гранта РНФ №23-11-00116

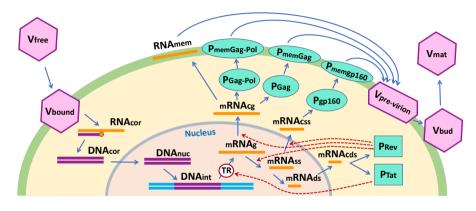
Моделирование терапии ВИЧ-инфекции

- Для лечения ВИЧ-инфекции применяется комбинированная противовирусная терапия из нескольких лекарств
- Различные классы противовирусных препаратов подавляют определенные этапы размножения ВИЧ в клетке
- Функции действия препаратов (уравнения фармакодинамики) входят в модели системной динамики ВИЧ-инфекции как управляющие функции $\mathbf{U} = \mathbf{U}(\mathbf{C}(t))$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{Y}(t) = \mathbf{S}(t) + \mathbf{A}(\mathbf{Y}(t)) \cdot \mathbf{Y}(t) + \mathbf{B}(\mathbf{Y}(t)) \cdot \mathbf{U}(t)$$

ullet Цель работы: определение зависимостей ${\bf U}({f C})$ на основе внутриклеточной модели фармакодинамики препаратов.

2


Моделирование терапии ВИЧ-инфекции

• Рассмотрим модель ВИЧ-инфекции Hadjiandreau et al., в которой представлены следующие переменные:

$$\mathbf{Y}(t) = \begin{bmatrix} V_1(t), \ V_2(t), \ T(t), \ T_1(t), \ T_{L1}(t), \ T_2(t), \ T_{L2}(t), \ M(t), \ M_1(t), \ M_2(t), \ E(t) \end{bmatrix}^T$$

- Вирусы: $V_1(t)$ дикого типа, $V_2(t)$ мутанты, не подверженные действию терапии
- CD4+ Т-клетки: неинфицированные T(t), продуктивно инфицированные $T_i(t)$, латентно инфицированные $T_{L_i}(t)$ вирусом типа $i \in \{1,2\}$
- Макрофаги: неинфицированные M(t), инфицированные $M_i(t)$
- CD8 $^+$ Т-клетки эффекторы: E(t) (уничтожают зараженные клетки)
- Управляющие функции: $\mathbf{U}(\mathbf{C}(t)) = [u_1(\mathbf{C}(t)), u_2(\mathbf{C}(t))]^T$, где
 - $u_1({f C})$ влияние лекарств на вероятность заражения клетки, $u_2({f C})$ влияние лекарств на количество вирусных частиц, производимых зараженной клеткой.

Модель внутриклеточной репликации ВИЧ

Подробная схема процессов внутриклеточной репликации ВИЧ.

Схема действия противовирусных препаратов двух типов

Переменные внутриклеточной модели:

$$\mathbf{X}(t) = [[V_{free}](t), \dots, [DNA_{int}](t), \dots, [V_{bud}](t), [V_{mat}](t)]^T \in \mathbb{R}^{24}$$

$$\mathbf{V}_{free}$$

$$\mathbf{RTIS}$$

$$\mathbf{V}_{bound}$$

$$\mathbf{Early cell infection}$$

$$\mathbf{PIS}$$

$$\mathbf{RNA}_{cor}$$

$$\mathbf{RNA}_{cor}$$

$$\mathbf{Early cell infection}$$

$$\mathbf{RNA}_{cor}$$

$$\mathbf{Nucleus}$$

$$\mathbf{Nucleus}$$

Упрощенная схема процессов репликации ВИЧ. Т-образными стрелками обозначено действие двух типов лекарств: 1) ингибиторы обратной транскрипции (RTIs) уменьшают скорость обратной транскрипции k_{RT} , 2) ингибиторы протеазы (PIs) уменьшают скорость созревания вирусных частиц k_{mat} .

Параметризация действия ингибиторов обратной транскрипции

Для описания действия препаратов ЗТС и AZT на скорость обратной транскрипции k_{RT} использовалась следующая параметризация:

$$k_{RT}^*(C_{3TC},C_{AZT}) = k_{RT} \frac{1}{1 + \left(\frac{C_{3TC}}{[IC50_{3TC}]}\right)^{m_{3TC}}} \frac{1}{1 + \left(\frac{C_{AZT}}{[IC50_{AZT}]}\right)^{m_{AZT}}},$$

где C_i — концентрации i-го препарата, $[IC50_i]$, m_i — значения параметров модели; $i \in \{3TC, AZT\}$.

Под эффективностью i-го препарата понимается величина

$$\Phi_{eff}(C_i) = 1 - \frac{\Phi_{inf}(C_i)}{\Phi_{inf}(0)}, \quad \Phi_{inf} = P([DNA_{int}](t=T) > 0),$$

где функционал $\Phi_{inf}=\Phi_{inf}(C_i)$ — вероятность продуктивного инфицирования клетки (доля зараженных клеток в культуре) рассчитывается на основе ансамбля реализаций стохастической версии модели на основе марковской цепи как вероятность интеграции в хромосому клетки как минимум одной вирусной ДНК за T=36 ч.

В культуре клеток отдельная клетка может быть инфицирована разным числом вирусных частиц $[V_{free}](t=0)$, поэтому начальное условие определяется распределением Пуассона:

$$[V_{free}](0) \sim \mathcal{P}(a)$$

При значении параметра распределения Пуассона a=0.8, функционал $\Phi_{inf}(0)\approx 0.3$, что соответствует условиям экспериментального метода (заражение приблизительно 30% клеток без добавления лекарств).

Параметризация действия ингибиторов протеазы

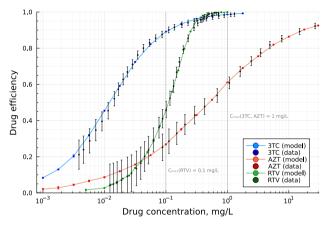
Для описания действия препарата RTV на скорость созревания k_{mat} использовалась следующая параметризация:

$$k_{mat}^{*}(C_{RTV}) = k_{mat} \frac{1}{1 + \left(\frac{C_{RTV}}{[IC50_{RTV_1}]}\right)^{m_{RTV_1}}} \frac{1}{1 + \left(\frac{C_{RTV}}{[IC50_{RTV_2}]}\right)^{m_{RTV_2}}},$$

Следуя экспериментальному протоколу, эффективность препарата оценивалась в два этапа.

На первом этапе оценивалась доля полноценных созревших вирусных частиц $\varepsilon(C_{RTV})$, которые были произведены клетками при концентрации лекарства C_{RTV} :

$$\varepsilon(C_{RTV}) = \frac{\Phi_{total}(C_{RTV})}{\Phi_{total}(0)}, \quad \Phi_{total} = \int_{0}^{T} k_{mat}[V_{bud}](t)dt,$$


где используется функционал $\Phi_{total}=\Phi_{total}(C_{RTV})$, означающий суммарное количество произведенных за цикл репликации полноценных вирусных частиц, оцениваемый по решению детерминистической версии модели с фиксированным референсным начальным условием $[V_{free}(0)]=4$.

 ${\it Ha\ emopon\ 3mane}$ оценивалась эффективность препарата через долю инфицированных клеток-мишеней Φ_{inf} , однако с другим начальным условием стохастической версии модели:

$$[V_{free}](0) \sim \mathcal{P}(a \cdot \varepsilon(C_{RTV})),$$

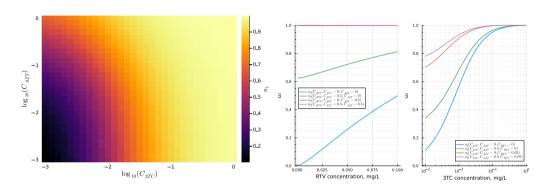
где a=0.8, а $\varepsilon(C_{RTV})$ позволяет учесть то, что только полноценно созревшие вирусные частицы способны заражать клетки-мишени.

Результат калибровки модели внутриклеточной фармакодинамики

Результат калибровки модели внутриклеточной фармакодинамики по кривым эффективности монотерапии для трех препаратов. Кривые эффективности монотерапии препаратов оцифрованы из статьи Jilek et al.

Предсказание значений управляющих функций при комбинированной терапии

Значения u_1 (действие препаратов I-го типа на вероятность заражения клетки) рассчитываются следующим образом:

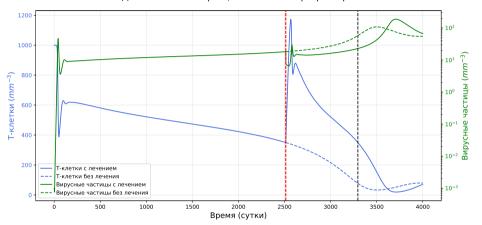

$$u_1(C_{3TC}, C_{AZT}) = 1 - \frac{\Phi_{inf}(C_{3TC}, C_{AZT})}{\Phi_{inf}(0, 0)}$$

Значения u_2 (действие препаратов I-го и II-го типа на количество производимых зараженных клеткой полноценных вирусных частиц):

$$u_2(C_{3TC}, C_{AZT}, C_{RTV}) = 1 - \frac{\Phi_{total}(C_{3TC}, C_{AZT}, C_{RTV})}{\Phi_{total}(0, 0, 0)}$$

9

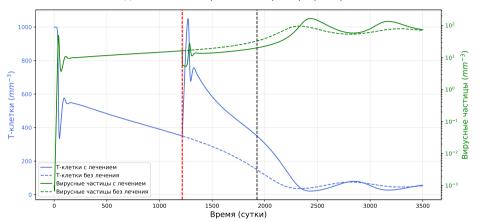
Предсказание значений управляющих функций при комбинированной терапии


Предсказанные значения управляющей функции u_1 (слева) и u_2 (справа) для разных концентраций препаратов, варьируемых в пределах наблюдаемых в крови концентраций при стандартном приеме лекарств.

Моделирование стандартного режима терапии

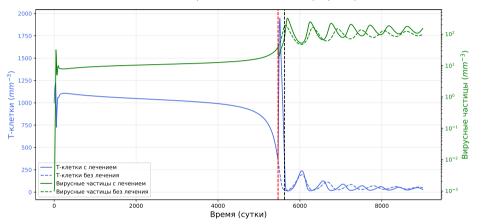
- Рассматриваются три набора параметра модели системной динамики ВИЧ-инфекции, соответствующие течению инфекции в трех группах пациентов: типичных и быстрых прогрессоров, непрогрессоров
- Моделируется стандартный режим комбинированного приема трех препаратов $\mathbf{C}(t) = [C_{3TC}(t), C_{AZT}, C_{RTV}]^T$ согласно уравнениям их фармакокинетики при двукратном приеме в сутки
- Терапия начинается на стадии хронической инфекции при снижении уровня Т-клеток ниже критического порога (концентрации в 350 клеток на мм 3) (момент времени t_{start}) и продолжается до тех пор, пока ее применение остается целесообразным (уровень Т-клеток поддерживается выше критического порога) (момент времени t_{end})

Моделирование стандартного режима терапии: типичные прогрессоры



Динамика ВИЧ-инфекции у типичных прогрессоров (уровень Т-клеток и вирусной нагрузки). Начало терапии t_{start} обозначено красной пунктирной линией. Момент времени t_{end} , когда терапия перестает быть целесообразной, показан черной пунктирной линией.


Моделирование стандартного режима терапии: быстрые прогрессоры



Динамика ВИЧ-инфекции у быстрых прогрессоров (уровень Т-клеток и вирусной нагрузки). Начало терапии t_{start} обозначено красной пунктирной линией. Момент времени t_{end} , когда терапия перестает быть целесообразной, показан черной пунктирной линией.

Моделирование стандартного режима терапии: непрогрессоры

Динамика ВИЧ-инфекции у непрогрессоров (уровень Т-клеток и вирусной нагрузки). Начало терапии t_{start} обозначено красной пунктирной линией. Момент времени t_{end} , когда терапия перестает быть целесообразной, показан черной пунктирной линией.

Сравнение эффективности стандартного режима терапии для трех фенотипов инфекции

- ullet Длительность целесообразного периода терапии $T_{exp}=t_{end}-t_{start}$
- ullet Функционал интегральной вирусной нагрузки $V_{AUC}(\mathbf{Y}(\mathbf{C})) = \int_{t_{start}}^{t_{end}} (V_1(t) + V_2(t)) dt$
- Интегральная выраженность побочных эффектов при неизменном (стандартном) режиме применения препаратов пропорциональна длительности терапии T_{exp}
- Сравнение эффективности терапии:

	Типичные прогресссоры	Быстрые прогрессоры	Непрогрессоры
T_{exp} , сутки	782	710	155
$V_{AUC}(\mathbf{C})/V_{AUC}(0)$	0.58	0.69	0.45

Заключение

- Предложен подход к выводу уравнений фармакодинамики на основе стохастической модели внутриклеточной репликации вируса
- Идентифицированы параметры модели внутриклеточной фармакодинамики трех противовирусных препаратов по экспериментальным данным
- Приводятся расчеты действия стандартного режима комбинированной терапии и сравнивается ее эффективность для трех групп пациентов: типичных и быстрых прогрессоров, непрогрессоров

Спасибо за внимание!

Благодарности:

- Бочаров Геннадий Алексеевич, Савинков Ростислав Сергеевич
- Московский центр фундаментальной и прикладной математики (отделение ИВМ РАН)
- Студенты летней школы 2025 г. «Численные методы и математическое моделирование в науках о жизни и Земле» при международном матцентре «Сириус»: Л. Нерсесян, М. Селезнев, Г. Селиванов
- Работа выполнена при поддержке гранта РНФ №23-11-00116