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Goal of the project

We study the movement of the living organism in a band form towards
the presence of chemical substrates based on a system of partial
differential evolution equations. We incorporate Einstein’s method of
Brownian motion to deduce the chemotactic model exhibiting a
traveling band. We have shown that in the presence of limited and
unlimited substrate, traveling bands are achievable and it has been
explained accordingly. We also study the stability of the constant
steady states for the system. The linearized system about a constant
steady state is obtained under the mixed Dirichlet and Neumann
boundary conditions. We are able to find explicit conditions for linear
instability. The linear stability is established with respect to the
L2-norm, H1-norm, and L∞-norm under certain
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Observed Experiment

Figure 1: Chemotactic Bacteria Flow in the Tube
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Model of the Flow

Figure 2: Petrie Dish Bacteria Flow
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Models with consumption or reaction term
Let X = (x , t) is an observable point in space x ∈ R at time t ∈ (0,∞). Late
space of observation for t > 0 bounded by two planes x and x + dx
perpendicular to the x-axis. τ time interval between the collision of two
particles , the interval τ is “sufficiently small” compared to the time scale t .∆
be the distance each particle makes during the time interval (t , t + τ) and
φτ (∆) be the probability density function of non-collision.
w(x , t) is the number of the particles in the volume [x , x + dx ].

Definition 1

(Expected value of the length of free jump)

∆e =

∫
∆φτ (∆)d∆.

Definition 2

(Standard variance of free jump)

σ2 =

∫
(∆−∆e)

2φτ (∆)d∆.
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Then the number of particles found at time t + τ between two planes
perpendicular to the x-axis, with abscissas x and x + dx , is given by

(w(x , t + τ)) · dx =

E[w(x +∆, t)]︸ ︷︷ ︸
I1

+w
∂∆e

∂x︸ ︷︷ ︸
I2

+
1
τ

∫ t+τ

t
f (x , ξ)dξ︸ ︷︷ ︸
I3

 · dx

(1.1)

Here, E[w(x +∆, t)] =
∫ ∞

−∞
w(x +∆, t)φτ (∆)d∆

In the right-hand side of Eq. (1.1), the first term, I1, describes the
particle distribution due to random walk. The second term, I2,
explains the adjective flux of particles dependent on the gradient of
the expected length. And the last term, I3, represents the birth or
death of particles during [t , t + τ ].
τ , ∆, and φτ (∆) can be functions of spatial distance x and the time
variable t and of any other physical quantity such as density or the
number of particles, etc. In our case, we will assume, for now, τ to be
independent of the concentration of particles w(x , t). And φτ (∆) is
fixed with respect to w(x , t).
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We add and subtract w(x , t) on the right-hand side of the Eq. (1.1) and then
we compute as follows(

w(x , t + τ)− w(x , t)
)
· dx

=

(
E[w(x +∆, t)]− Ew [(x , t)] + w · ∂∆e

∂x
+

1
τ

∫ t+τ

t
f (x , ξ)dξ

)
· dx . (1.2)

Assume that w(x , t) is four time differentiable function on R and bounded,
then

(
E[w(x +∆, t)]− w(x , t)

)
can be well approximated by formulae

(
E[w(x +∆, t)]− w(x , t)

)
=

1
2
σ2 ∂

2w(x , t)
∂x2 +∆e

∂w(x , t)
∂x

. (1.3)

Using properties of the function φ and applying Eq. (1.3) on (1.2), we get

τ
∂w
∂t

=∆e
∂w
∂x

+ w · ∂∆e

∂x
+

1
2
σ2 ∂

2w
∂x2 +

1
τ

∫ t+τ

t
f (x , ξ)dξ, (1.4)

or, equivalently,

τ
∂w
∂t

=
∂ (w ·∆e)

∂x
+

1
2
σ2 ∂

2w
∂x2 +

1
τ

∫ t+τ

t
f (x , ξ)dξ. (1.5)
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Equation for bacteria in the presents of chemotactic
force

The corresponding expression of the Eq. (1.5) for bacteria is

τu
∂u
∂t

− ∂ (u ·∆e,u)

∂x
− 1

2
σ2

u
∂2u
∂x2 − 1

τu

∫ t+τu

t
fu(x , ξ)dξ = 0. (1.6)

The chemotactic response of the bacteria u(x , t) in the medium can
be influenced by the concentration of chemical substrate v(x , t)
and/or ∇v . We assume that the chemotactic response, which causes
the event of movement of the organism towards food (or any
attractor), is proportional to relative changes of v in space with
respect to the amount of food. We assume that ∆e,u and σu also
depend on v(x , t). Keller-Segel suggested a density-dependent
sensitivity with a singularity at v = 0 . Following the Keller-Segel
assumption, we suggested the dynamics of directed movement
characterized by the expected value of free jump ∆e,u as follows,

∆e,u(v) = −β(v)
∂v
∂x

= −β

v
∂v
∂x

= −β
∂ ln v
∂x

. (1.7)

β is a positive chemotactic coefficient having dimension [L2].
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Final equation for bacteria under no reaction force
Although in real life, the standard deviation is a composite parameter
depending on v , ∇v , u,∇u, x , t , etc, in this we consider the dynamics of
processes with constant standard deviation. Namely,

σ2
u(v) = µ, (1.8)

where µ is the motility parameter or diffusion coefficient of the organism with
dimension [L2]. Both µ and β can be obtained from analyses of the dynamics
of the process, using image processing.
fu is the number of organisms that are born or die per unit volume. We will
assume that ∫ t+τu

t
fu(x , ξ)dξ = τug(u, v). (1.9)

Here g(u, v) is the rate of born or death of the organism with dimension [
1
T
].

Since the growth or reproduction of an organism happens on a large time
scale and chemotaxis occurs on a very small time scale, we can ignore the
growth term. Then g(u, v) = 0 in Eq. (1.10) gives

τu
∂u
∂t

+ β
∂

∂x

(
u
∂ ln v
∂x

)
− µ

2
∂2u
∂x2 = 0. (1.10)

The first term on the right-hand side of Eq. (1.10) is the chemotactic
response of the organism. The second term is the change in the density of
an organism due to random motion. 9 / 17



Assumption on birth of organisms and main
chemotactic system

And the concentration v(x , t) of chemical substrates can be given by
the equation

τv
∂v
∂t

− ∂ (v ·∆e,v )

∂x
− 1

2
σ2

v
∂2v
∂x2 − 1

τv

∫ t+τv

t
fv (x , ξ)dξ = 0. (1.11)

Assuming ∆e,v = 0 and − 1
τv

∫ t+τv

t
fv (x , ξ)dξ = τv k(u, v)u one will

get

τu
∂u
∂t

+ β
∂

∂x

(
u
∂ ln v
∂x

)
− µ

2
∂2u
∂x2 = 0, (1.12a)

τv
∂v
∂t

− D
2
∂2v
∂x2 + τv k(u, v)u = 0. (1.12b)
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Summary of the Biological Assumptions

Assumption 1

Food (chemical substrate) is considered to be immovable, so no
chemical interaction between particles of substrates is possible under
our assumption. Hence,

∆e,v = 0 and σ2
v = D,

with D being the diffusion constant of the chemical substrate.

Assumption 2

fv is defined to be the consumption of substrate cells and∫ t+τv

t
fv (x , ξ)dξ = H(u, v) = −τv k(v)u,

where k(v) is the rate of consumption of the substrate with dimension

[
1
T
].
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Traveling bands

This section is dedicated to showing that chemotactic models in the
presence of unlimited and limited substrate exhibits traveling band.
First, we will define the traveling band.

Definition 3

(Traveling Band) The system of Eqs. (1.10) and (??) exhibits a
traveling band form if there exist solutions u(x , t) and v(x , t) of the
following form

u(x , t) = U(x − ct) and v(x , t) = V (x − ct) for all x ∈ R and t ≥ 0
(1.13)

where c > 0 is the constant band speed, and U, V are functions from
R to (0,∞) such that lim

ζ→±∞
U(ζ) and lim

ζ→±∞
V (ζ) exist and belong to

[0,∞), , ζ = x − ct .

We will also assume D = 0 in the Eq. (??) since its effect is trivial in
the chemotactic model. And, for the sake of simplicity, we will use
τ = τu and τv = 1.
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The case of unlimited substrates

In the presence of an abundance of the substrate, the rate of consumption of
the food, k(v), does not depend on the concentration of food.

τ
∂u
∂t

+ β
∂

∂x

(
u
∂ ln v
∂x

)
− µ

2
∂2u
∂x2 = 0, (1.14)

∂v
∂t

+ ku = 0, (1.15)

Theorem 4

If d =
2β
µ

and d ≥ 1, then for any τ, β, µ, k , c,V∞,C0 > 0 and d ≥ 1, there

exist solutions

U(ζ) = C0V d(ζ)e− 2τcζ
µ , , (1.16)

V (ζ) =


[1

2
C0kc−2τ−1µ(d − 1)e− 2τcζ

µ + V−d+1
∞

]− 1
d−1 for d > 1,

V∞e− 1
2 C0kc−2τ−1µe

− 2τc
µ

ζ

for d = 1.
(1.17)

Moreover, (U(ζ),V (ζ)) that satisfies

U(ζ) −→ 0, U
′
(ζ) −→ 0, V (ζ) −→ V∞ as ζ −→ ∞, (1.18)
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The case of limited substrates

τ
∂u
∂t

+ β
∂

∂x

(
u
∂ ln v
∂x

)
− µ

2
∂2u
∂x2 = 0, (1.19)

∂v
∂t

+ kuv = 0. (1.20)

Theorem 5

For any τ, β, µ, k , c > 0 the system has a traveling band of the form (1.13).
More precisely, U(ζ) and V (ζ) can be given by

U(ζ) =
τc2

βk
(
1 + C0e

2τc
µ

ζ)−1
, (1.21)

V (ζ) = V∞

(
1 + C−1

0 e− 2τc
µ

ζ
)− µ

2β
, (1.22)

where V∞ > 0 and C0 > 1. In fact, U(ζ) and V (ζ) in Eqs. (1.21) and (1.22)
are unique solutions of Eqs. (1.19) and (1.20) that satisfy condition (1.18) and

U(0) =
τc2C0

βk
. (1.23)
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Illustration on pictures for U
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Figure 3: Concentration of bacteria U(ζ) divided by Q = C0V∞ for different values of τ
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Limiting values of the concentrations of bacteria and
the food
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(a) Organism (unlimited food)
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Figure 4: Showing the uniform convergence of (a) the concentration of bacteria U(ζ) divided by
Q = C0V∞ to the solution U1 and (b) the concentration of the substrates V (ζ) divided by V∞ to the
solution V1 as d → 1.
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End

Thank you
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