Математическая модель взаимодействия вирусов в эпителии дыхательных путей

Червяков Никита Михайлович аспирант МГУ им. М.В.Ломоносова

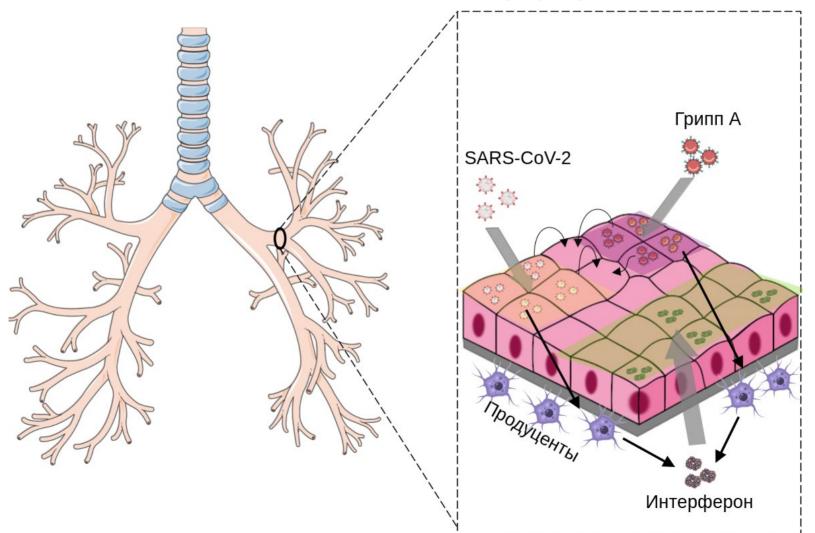
Москва 17.10.2025

- В пандемию COVID-19 в период 2020-2021 годов наблюдалось снижение заболеваемости, вызванной вирусами гриппа и другими респираторными вирусами [1].
- В 2021 году наблюдалось снижение заболеваемости гриппом до 5-10% от уровня 2019 года [2].
- В указанный период существенно снизилась заболеваемость респираторно-синцитиальным вирусом, аденовирусом и парагриппом [1].

^{[1] -}Соминина, А.А. и др., Эпидемиология и вакцинопрофилактика, 20(4), рр.28-39.

^{[2] -} Bender, R.G. et. al., The Lancet Infectious Diseases, 24(9), pp.974-1002.

Механизмы снижения заболеваемости гриппом в ходе пандемии COVID-19


- В [1,2] снижение заболеваемости гриппом объясняется следующими механизмами:
 - Противоэпидемические меры, снижающие скорость передачи инфекции в популяции (локдауны, ношение масок);
 - Взаимодействие вирусов в эпителии, снижающее инфекционность вирусов;

- Вирусная интерференция явление, при котором инфекция одним вирусом влияет на инфекции другими вирусами [3];
- Рассматривается 2 механизма взаимодействия вирусов действие системы интерферона и конкуренция вирусов за клетки-мишени [3].
 - Механизмы интерференции ведут к возникновению периода невосприимчивости к инфицированию вторым вирусом во время инфекции первым.

Цели работы

- Построить модель взаимодействия двух вирусов в эпителии дыхательных путей человека;
- Оценить период полной или частичной невосприимчивости к инфицированию вторым вирусом во время протекания инфекции первым вирусом.

Механизм действия интерферона

Математическая модель взаимодействия вирусов в эпителии дыхательных путей

- Математическая модель состоит из трех блоков:
 - Двух блоков, описывающих динамику инфекции и действие интерферона при вирусных инфекциях SARS-CoV-2 и гриппа;
 - Блок адаптивного противовирусного иммунного ответа на SARS-CoV-2.

- Используется модель противовирусного иммунного ответа Марчука [4];
- Модель была модифицирована для учета взаимодействия двух вирусов и продукции интерферона плазмацитоидными дендритными клетками.

Модель вирусной инфекции в эпителии

$$\frac{dV}{dt} = \nu C_V - \gamma_{VM} V - \gamma_{VC} V (C^* - C_V - C_R - m) \quad (1)$$

$$\frac{dC_V}{dt} = \sigma V(C^* - C_V - C_R - m) - b_m C_V \tag{2}$$

$$\frac{dm}{dt} = b_m C_V + \alpha_C (C^* - C_V - C_R - m) - \alpha_m m \qquad (3)$$

$$\frac{dM}{dt} = \chi(M^* - M)V - \alpha_M M \tag{4}$$

$\frac{I}{J_{\mu}} =$	$= \rho_I M$ –	$-\alpha_I I$ $-$	$\sigma_I I(C^*$ -	$-C_V$ $-$	$-C_R-m)$	(5)
$\frac{1}{dt} =$	$= ho_I M$ $-$	$\alpha_I I -$	$\sigma_I I(C^*$ -	$-C_V$ $-$	$-C_R-m)$	(5

$$\frac{dC_R}{dt} = \sigma_R I(C^* - C_V - C_R - m) - \alpha_R C_R \tag{6}$$

V	концентрация вирусов в эпителии дыхательных путей	
Cv	концентрация инфицированных клеток реснитчатого эпителия	
m	концентрация пораженных клеток реснитчатого эпителия	
М	концентрация клеток-продуцентов интерферона	
I	концентрация интерферона	
CR	концентрация защищенных клеток реснитчатого эпителия	

Модель взаимодействия вирусов

SARS-CoV-2

$$\frac{dC_{V1}}{dt} = \sigma_1 V_1 (C^* - C_{V1} - C_{V2} - C_R - m) - b_{CE} C_{V1} E - b_{m1} C_{V1}$$
(2)

$$\frac{dM_{I1}}{dt} = \chi_{M_I1}(M_I^* - M_{I1} - M_{I2})V - \alpha_{M_I1}M_{I1}$$
(3)

Грипп А

$$\frac{dV_2}{dt} = \nu_2 C_{V2} - \gamma_{V2M} V_2 - \gamma_{V2C} V_2 (C^* - C_{V1} - C_{V2} - C_R - m)$$
 (4)

$$\frac{dC_{V2}}{dt} = \sigma_2 V_2 (C^* - C_{V1} - C_{V2} - C_R - m) - b_{m2} C_{V2}$$
 (5)

$$\frac{dM_2}{dt} = \chi_2(M^* - M_1 - M_2)V_2 - \alpha_M M_2 \tag{6}$$

$$\frac{dm}{dt} = b_{m1}C_{V1} + b_{m2}C_{V2} + \alpha_C(C^* - C_{V1} - C_{V2} - C_R - m) - \alpha_m m$$
 (7)

$$\frac{I}{dt} = \rho_I(M_1 + M_2) - \alpha_I I - \sigma_I I(C^* - C_{V1} - C_{V2} - C_R - m) \tag{8}$$

$$\frac{dC_R}{dt} = \sigma_R I(C^* - C_{V1} - C_{V2} - C_R - m) - \alpha_R C_R \tag{9}$$

Модель адаптивного иммунного ответа на вирус

SARS-CoV-2 [4]

$rac{dM_{AP}}{dt} = \chi_{M_{AP}}(M_{AP}^*-M_{AP})V - lpha_{M_{AP}}M_{AP}$	(10)
---	------

$$rac{dE}{dt} = b_p^E [
ho_E M_{AP}(t- au_E) H_E(t- au_E) E(t- au_E) - M_{AP} H_E E] - b_{EC} C_V E + lpha_E (E^*-E) \quad (13)$$

$$\frac{dB}{dt} = b_p^B [\rho_B M_{AP}(t - \tau_B) H_B(t - \tau_B) B(t - \tau_B) - M_{AP} H_B B] + \alpha_B (B^* - B)$$
 (14)

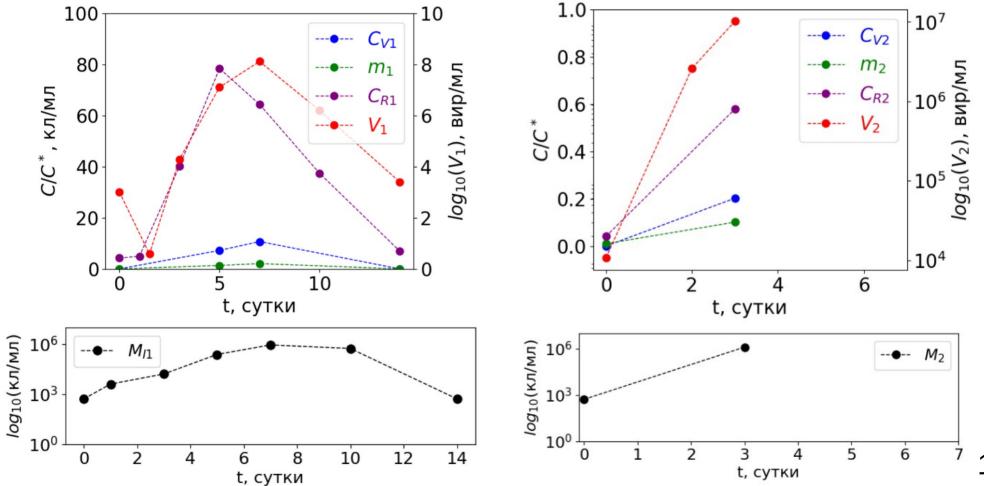
$$\frac{dP}{dt} = b_p^P \rho_P M_{AP}(t - \tau_P) H_B(t - \tau_P) B(t - \tau_P) + \alpha_P (P^* - P)$$

$$\tag{15}$$

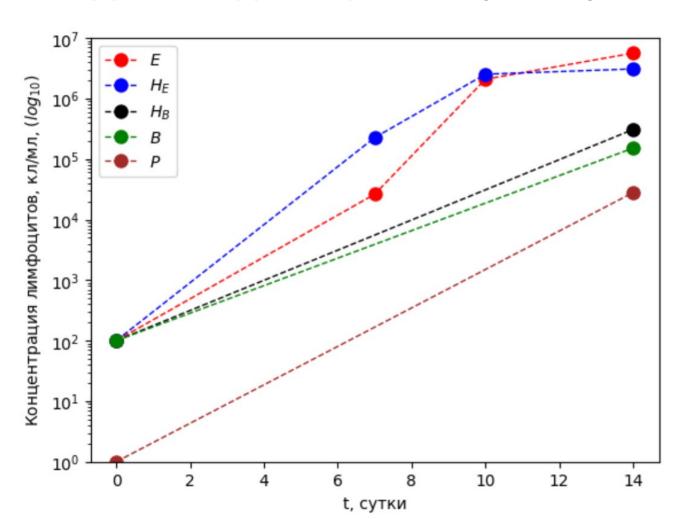
$$\frac{dF}{dt} = \rho_F P - \alpha_F F - \gamma_{FV} FV \tag{16}$$

Мар	концентрация антиген- презентирующих клеток
HE	концентрация Т хэлперов, стимулирующих цитотоксические Т киллеры
Н в	концентрация Т хэлперов, стимулирующих В клетки
E	концентрация цитотоксических Т киллеров
В	концентрация В клеток
Р	концентрация плазматических клеток, секретирующих антитела
F	концентрация антител

Оценка параметров модели


- Динамика переменных оценена по данным [5 7] для двух изолированных инфекций;
- Модель настроена на данные изолированного течения каждой инфекции

[5] - Lindeboom, R.G. et.al., Human SARS-CoV-2 challenge uncovers local and systemic response dynamics. Nature, 631(8019), pp.189-198.

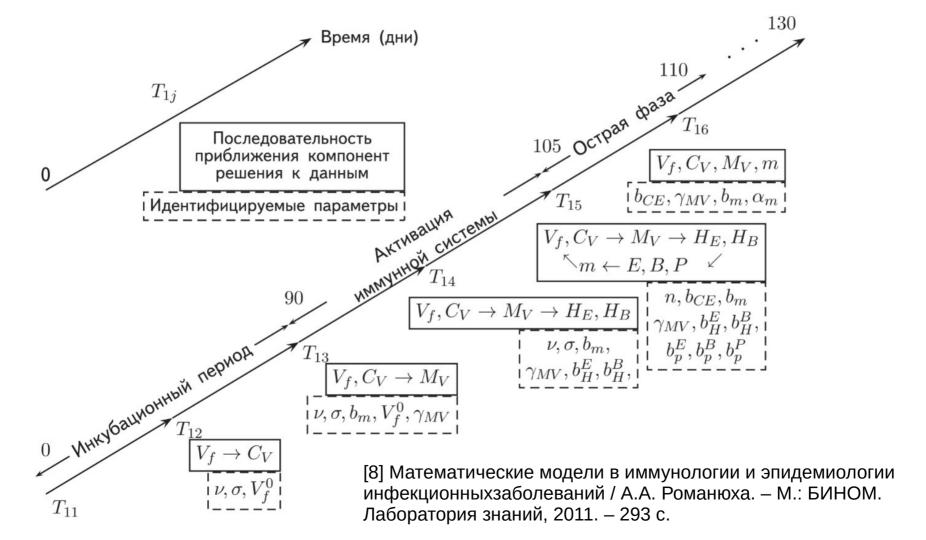

[6] - Gao, K.M., 2021. JCI insight, 6(22), p.e152288.

[7] - Ip, D.K., Clinical Infectious Diseases, 62(4), pp.431-437.

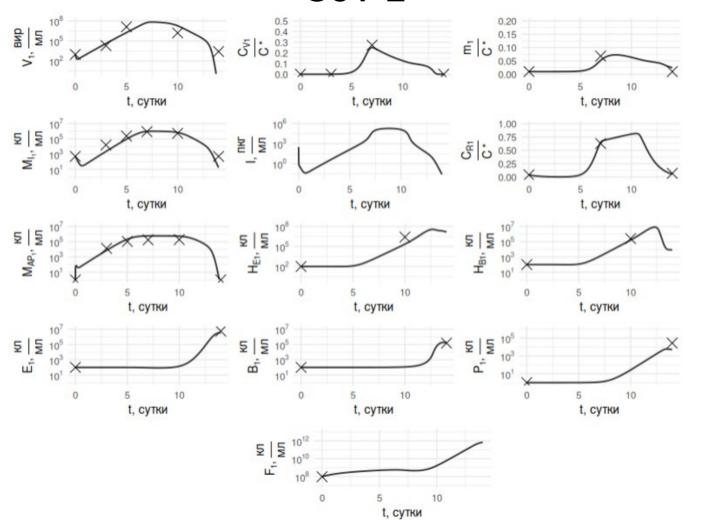
Данные для оценки параметров

Данные для оценки параметров

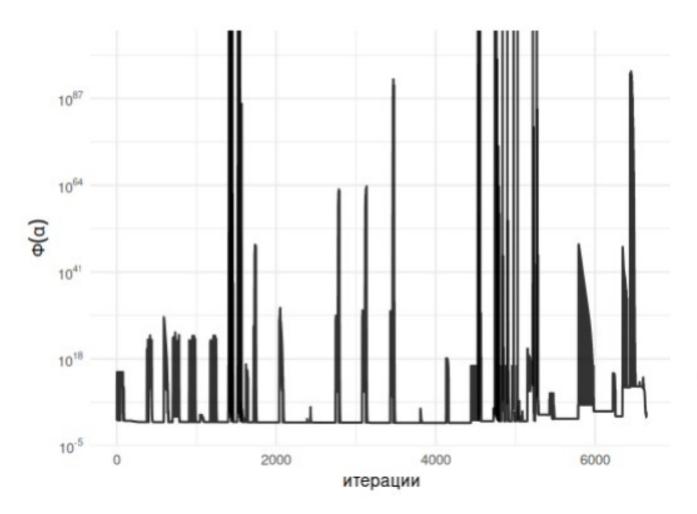
Оценка параметров модели


• Задача идентификации параметров сводится к задаче минимизации функционала

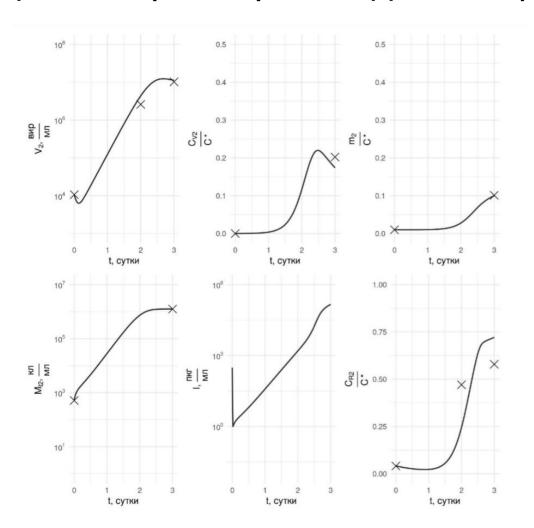
$$\Phi(lpha) = \sum_{j=1}^{M} \sum_{i=1}^{N} [(rac{y^{(i)}(t_j,lpha) - y^{(i)}_{obsj}}{y^{(i)}_{obsj}})^2 + (rac{y^{(i)}(t_j,lpha) - y^{(i)}_{obsj}}{y^{(i)}(t_j,lpha)})^2]
ightarrow min$$

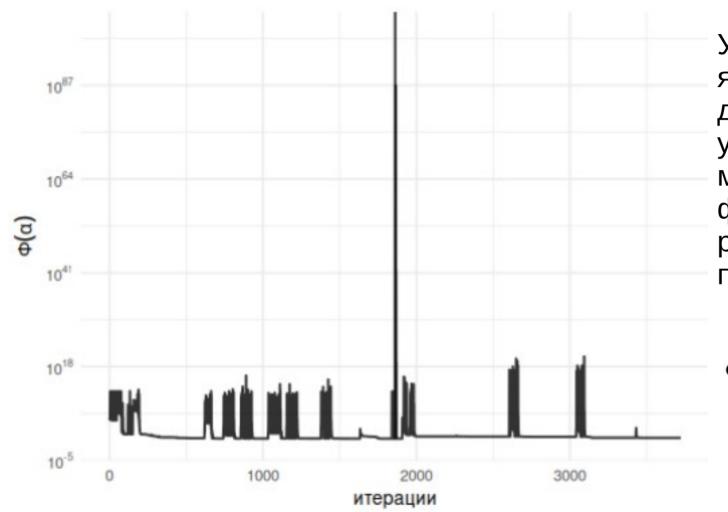

- ullet M размер вектора экспериментальных данных ullet
- N размер вектора решений модели
- $y_{obsj}^{(i)}$ вектор экспериментальных данных
- $y^{(i)}(t_j, lpha)$ вектор решений модели

- Задача Коши решалась неявным многошаговым методом Адамса;
- Задача поиска минимума функционала $\Phi(\alpha)$ решалась симплекс-методом Нелдера-Мида и квазиньютоновским методом BFGS.


Схема последовательной оценки параметров модели

Результаты оценки параметров модели инфекции SARS-CoV-2


Результаты оценки параметров модели инфекции


Условием остановки являлось отсутствие дальнейших улучшений при минимизации функционала для различных пар параметров

$$\Phi(\alpha)_f = 105$$

Результаты оценки параметров модели инфекции гриппа

Результаты оценки параметров модели инфекции гриппа

Условием остановки являлось отсутствие дальнейших улучшений при минимизации функционала для различных пар параметров

$$\Phi(\alpha)_f = 3.53$$

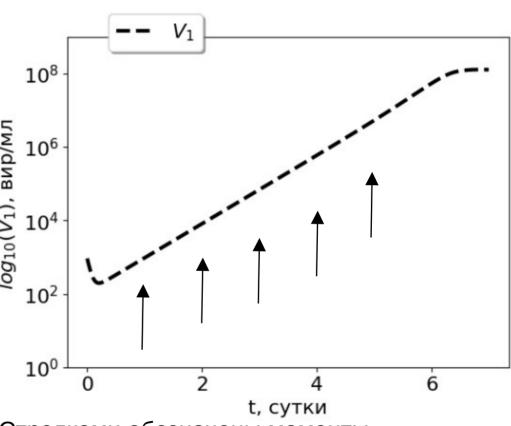
Оценки параметров модели, блоки взаимодействия вирусов в эпителии

Параметр	Допустимый диапазон	Оценка	Единица
$ u_1$	$10^1 - 10^2$	3.8	cym^{-1}
γ_{vm1}	2-4	2.95	cym^{-1}
γ_{vc1}	$2.29 imes 10^{-8} - 3.57 imes 10^{-10}$	$2.87 imes 10^{-8}$	$\frac{M\Lambda}{K\Lambda \times cym}$
σ_1	$2.29\times 10^{-8} - 3.57\times 10^{-10}$	2.58×10^{-8}	$\frac{M\Lambda}{K\Lambda \times cym}$
b_{m1}	0.1 - 1	0.29	cym^{-1}
$lpha_{c1}$	$3 imes 10^{-3} - 5 imes 10^{-3}$	$7 imes 10^{-3}$	$\frac{M\Lambda}{\kappa\Lambda \times cym}$
$lpha_{m1}$	0.5-1	0.69	cym^{-1}
χ_1	$1.59 imes 10^{-6} - 3 imes 10^{-7}$	$2.64 imes10^{-7}$	$\frac{\mathit{M}\mathit{\Lambda}}{\mathit{K}\mathit{\Lambda} \times \mathit{cym}}$
$lpha_{M1}$	0.33 - 1	0.78	cym^{-1}
$V_1(t=0)$	$10^3 - 10^4$	$9.24 imes 10^2$	вир
$C_{V1}(t=0)$	$1-10^3$	1.65	кл

Параметр	Допустимый диапазон	Оценка	Единица
$ u_2$	$10^1 - 10^2$	1.207	cym^{-1}
γ_{vm2}	2-4	3.95	cym^{-1}
γ_{vc2}	$1.53 imes 10^{-8} - 3.57 imes 10^{-10}$	3.18×10^{-9}	$\frac{M\Lambda}{\kappa\Lambda \times cym}$
σ_2	$1.53\times 10^{-8} - 3.57\times 10^{-10}$	9.36×10^{-8}	$\frac{M\Lambda}{\kappa\Lambda \times cym}$
b_{m2}	0.1 - 1	1.09	cym^{-1}
$lpha_{c2}$	$3 imes 10^{-3} - 5 imes 10^{-3}$	$7 imes 10^{-3}$	$\frac{M\Lambda}{\kappa\Lambda \times cym}$
$lpha_{m2}$	0.5 - 1	0.69	cym^{-1}
χ_2	$1.59 imes 10^{-6} - 3 imes 10^{-7}$	$6.92 imes 10^{-7}$	$\frac{M\Lambda}{\kappa\Lambda \times cym}$
$lpha_{M2}$	0.33 - 1.5	1.48	cym^{-1}
$V_2(t=0)$	10^4-10^5	$1.06 imes 10^4$	вир
$\mathcal{C}_{V2}(t=0)$	$1 - 10^3$	$1.03 imes 10^2$	кл
$ ho_I$	0.2 - 1	0.6	пкг
σ_I	$4 imes 10^{-5} - 7 imes 10^{-6}$	2.46×10^{-6}	$\frac{\mathit{MI}}{\mathit{nKe} \times \mathit{cym}}$
σ_R	$1.79 \times 10^{-4} - 8.35 \times 10^{-6}$	9.42×10^{-4}	$\frac{\mathit{MI}}{\mathit{nKe} \times \mathit{cym}}$
$lpha_I$	0.2 - 1	0.98	cym^{-1}
$lpha_R$	0.1 - 1	0.117	cym^{-1}
C^*	$3.56 imes 10^8 - 8.3 imes 10^8$	$4.56 imes 10^8$	кл

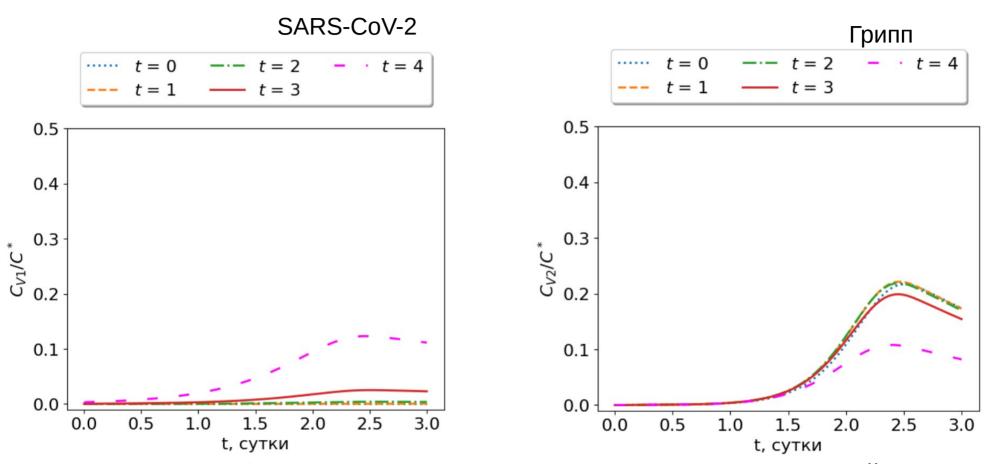
Оценки параметров модели, блок адаптивной иммунной защиты при инфекции SARS-CoV-2

XMAP	1.31×10 ⁻⁷ – 1.8×10 ⁻¹⁰	5.36×10 ⁻⁴⁶	мл×кл ⁻¹ ×сут ⁻¹
α_{MAP}	0.33 – 1.5	1.5	сут-1
b_H^E	3.6×10 ⁻⁶ – 1.8×10 ⁻⁷	8.04×10 ⁻⁵	мл×кл ⁻¹ ×сут ⁻¹
H_E^*	10 ² - 10 ³	10 ²	КЛ
$ ho_H^E$	2-4	2	
$b_p^{H_E}$	3.6×10 ⁻¹⁰ – 1.8×10 ⁻¹²	1.09×10 ⁻⁹	мл ² ×кл ⁻² ×сут ⁻¹
α_H^E	0.4 - 0.8	1	cyr-1
$ au_H^E$	0.8 – 1.2	0.37	сут
b_H^B	3.6×10 ⁻⁶ – 1.8×10 ⁻⁷	6.55×10 ⁻⁵	мл×кл ⁻¹ ×сут ⁻¹
H_B^*	10 ² - 10 ³	10 ²	кл
ρ_H^B	2-4	2	
$b_p^{H_B}$	3.6×10 ⁻⁷ – 1.8×10 ⁻¹⁰	1.15×10 ⁻⁷	мл ² ×кл ⁻² ×сут ⁻¹
α_H^B	0.4 - 0.8	0.1	сут-1
$ au_H^B$	0.8 – 1.2	0.3	сут
b_p^E	4.43×10 ⁻⁸ – 4.8×10 ⁻⁹	1.55 ×10 ⁻¹¹	мл×кл ⁻¹ ×сут ⁻¹
E*	10 ² - 10 ³	10 ²	КЛ
ρ_E	2-4	2	
b_{EC}	9.02×10 ⁻⁹ – 1.8×10 ⁻¹⁰	1.22×10 ⁻⁹	мл ² ×кл ⁻² ×сут ⁻¹
α_E	0.33 - 0.5	0.4	сут ⁻¹

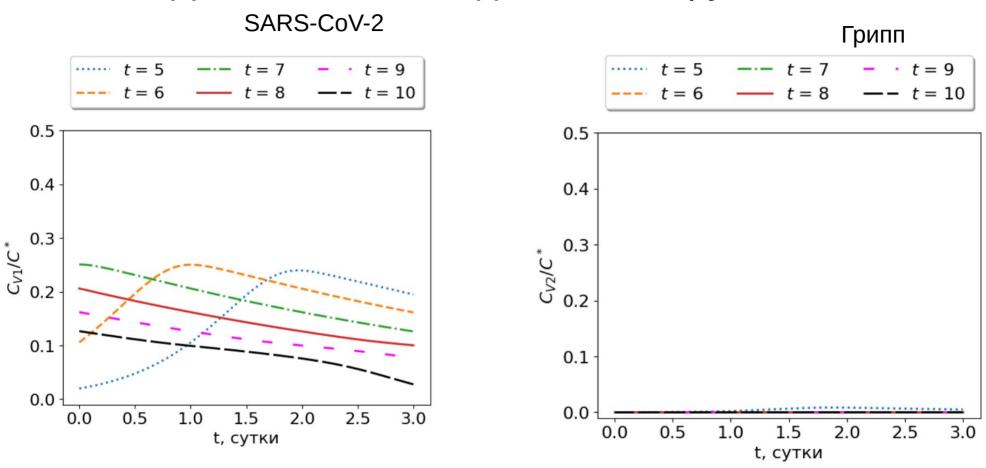

$ au_E$	0.5 - 1	0.61	сут
b_p^B	5.48×10 ⁻⁸ - 4.3×10 ⁻⁹	1.6×10 ⁻¹⁰	мл×кл ⁻¹ ×сут
B*	10 ¹ - 10 ²	10 ¹	кл
ρ_B	1.5 - 2	3	
α_B	0.05 - 1	0.1	сут ⁻¹
τ_B	0.5 - 1	0.64	сут
b_p^P	5.48×10 ⁻⁸ – 4.3×10 ⁻⁹	1.33×10 ⁻¹¹	мл×кл ⁻¹ ×сут
P^*	0-1	1	кл
ρ_P	0.5 - 1	1	
α_P	0.33 - 0.5	0.4	сут ⁻¹
τ_P	0.5 - 1	0.52	сут
ρ_F	8.64 ×10 ⁷ – 8.64 ×10 ⁹	9.5×10 ⁷	молекул ×кл ¹ ×сут ⁻¹
α_F	0.043	0.043	cyT-1
γ_{VF}	1.8×10 ⁻⁹ – 3.09×10 ⁻¹⁰	6.35 ×10 ⁻⁹	молекул×кл ⁻ ¹ ×сут ⁻¹

Исследование динамики взаимодействия двух вирусных инфекций в эпителии дыхательных путей человека

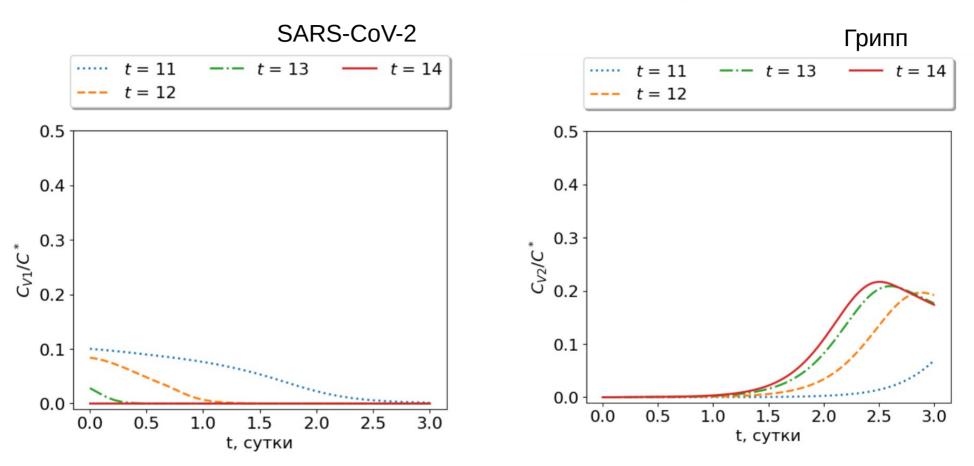
В вычислительном эксперименте введение «инфекции» вирусом гриппа в модель происходило в разные моменты времени *t[сутки]* после инфицирования вирусом SARS-CoV-2;
Цель вычислительного эксперимента — исследовать, как динамика инфекции гриппа А


зависит от динамики инфекции

SARS-CoV-2


t, сутки Стрелками обозначены моменты введения «инфекции» вирусом гриппа в модель

Динамика взаимодействия вирусов

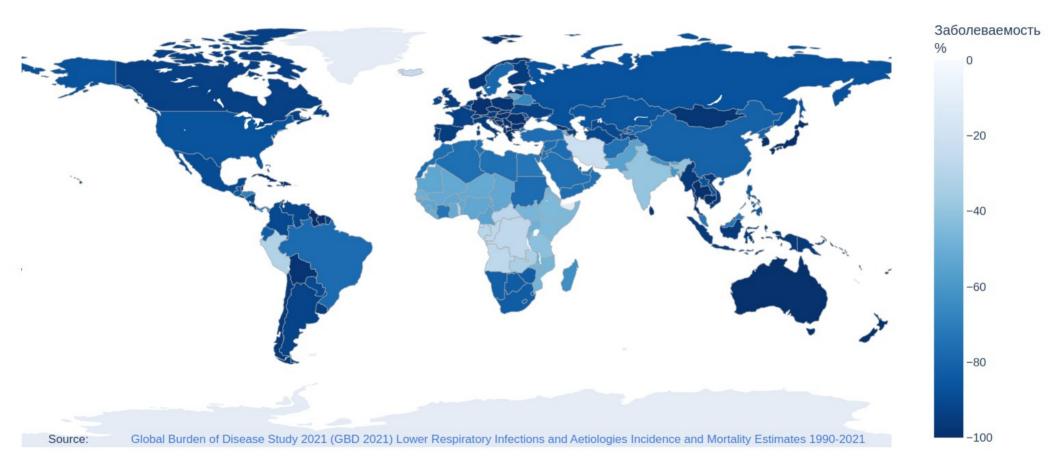

Изменение доли инфицированных клеток двумя вирусами при их взаимодействии

Динамика взаимодействия вирусов

Изменение доли инфицированных клеток двумя вирусами при их взаимодействии

Динамика взаимодействия вирусов

Изменение доли инфицированных клеток двумя вирусами при их взаимодействии


Заключение

- Построена математическая модель взаимодействия вирусов в эпителии дыхательных путей. Параметры модели оценены по экспериментальным данным, описывающим динамику изолированной инфекции для каждого вируса в эпителии дыхательных путей человека в локализации инфекции.
- Результаты моделирования взаимодействия вирусов демонстрируют период полной или частичной невосприимчивости человека к вирусу гриппа при инфекции SARS-CoV-2 в интервале до 11 суток.

Литература

- Соминина А. А. и др. Интерференция SARS-CoV-2 с другими возбудителямиреспираторных вирусных инфекций в период пандемии //Эпидемиология ивакцинопрофилактика. – 2021 – Т. 20 – №. 4 – С. 28-39.
- 2) Bender R. G. et al. Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: a systematicanalysis from the Global Burden of Disease Study 2021 //The Lancet InfectiousDiseases. 2024 T. 24 №. 9 C. 974-1002.
- 3) Nickbakhsh, S.,et. al., Virus–virus interactions impact the population dynamics ofinfluenza and the common cold. Proceedings of the National Academy of Sciences,116(52), 2019, pp.27142-27150.
- 4) Математические модели в иммунологии. Вычислительные методы иэксперименты/ Марчук Г. И. 3-е изд., перераб. и. доп. М.: Наука. Гл. ред. физ-мат. Лит., 1991 –304.
- 5) Lindeboom R. G. H. et al. Human SARS-CoV-2 challenge uncovers local and systemicresponse dynamics //Nature. 2024 T. 631 №. 8019 C. 189-198.
- 6) Gao K. M. et al. Human nasal wash RNA-Seq reveals distinct cell-specific innateimmune responses in influenza versus SARS-CoV-2 //JCl insight. 2021 T. 6 №.22 C. E152288.
- 7) Ip D. K. M. et al. The dynamic relationship between clinical symptomatology and viralshedding in naturally acquired seasonal and pandemic influenza virus infections

Снижение заболеваемости гриппом в 2021 относительно 2019

[2] - Bender, R.G., Sirota, S.B., Swetschinski, L.R., Dominguez, R.M.V., Novotney, A., Wool, E.E., Ikuta, K.S., Vongpradith, A., Rogowski, E.L.B., Doxey, M. and Troeger, C.E., 2024. Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: a systematic analysis from the Global Burden of Disease Study 2021. The Lancet Infectious Diseases, 24(9), pp.974-1002.

$$\frac{dV_1}{dt} = \nu_1 C_{V1} + nb_{CE} C_{V1} E - \gamma_{VF} V_1 F - \gamma_{VM1} V_1 - \gamma_{VC1} V_1 (C^* - C_{V1} - C_{V2} - C_R - m)$$

$$\frac{dV_2}{dt} = \nu_2 C_{V2} - \gamma_{VM2} V_2 - \gamma_{VC2} V_2 (C^* - C_{V1} - C_{V2} - C_R - m)$$
(F2)
$$\frac{dC_{V1}}{dt} = \sigma_1 V_1 (C^* - C_{V1} - C_{V2} - C_R - m) - b_{CE} C_{V1} E - b_{m1} C_{V1}$$
(F3)
$$\frac{dC_{V2}}{dt} = \sigma_2 V_2 (C^* - C_{V1} - C_{V2} - C_R - m) - b_{m2} C_{V2}$$
(F4)

$$\frac{dM_{I1}}{dt} = \chi_{M_{I}1}(M_{I}^{*} - M_{I1} - M_{I2})V_{1} - \alpha_{M_{I1}}M_{I1}$$

$$\frac{dM_{I2}}{dt} = \chi_{M_{I}2}(M_{I}^{*} - M_{I1} - M_{I2})V_{1} - \alpha_{M_{I2}}M_{I2}$$
(F6)

 $\frac{dm}{dt} = b_{m1}C_{V1} + b_{m2}C_{V2} + \alpha_C(C^* - C_{V1} - C_{V2} - C_R - m) - \alpha_m m$

$$\frac{dM_{AP}}{dt} = \chi_{M_{AP}}(M_I - M_{I1} - M_{I2})V_1 - \alpha_{M_{AP}}M_{I2}$$

$$\frac{dM_{AP}}{dt} = \chi_{M_{AP}}(M_{AP}^* - M_{AP})V - \alpha_{M_{AP}}M_{AP}$$
(F8) 28

(F5)

$$\frac{I}{dt} = \rho_I M - \alpha_I I - \sigma_I I (C^* - C_{V1} - C_{V2} - C_R - m)$$

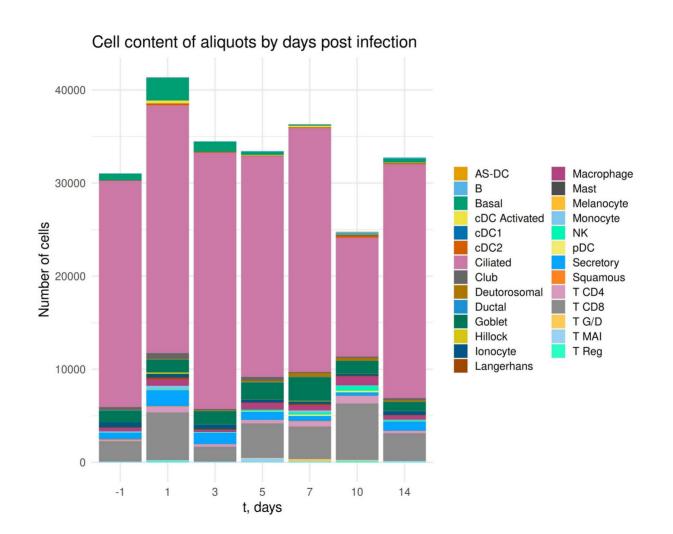
$$\frac{dC_R}{dt} = \sigma_R I (C^* - C_{V1} - C_{V2} - C_R - m) - \alpha_R C_R$$
(F10)

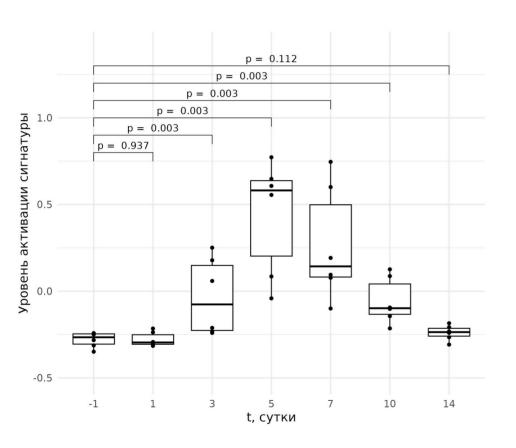
$$\frac{dH_E}{dt} = b_H^E [\rho_H^E M_{AP}(t - \tau_H^E) H_E(t - \tau_H^E) - M_{AP} H_E] - b_p^{H_E} M_{AP} H_E E + \alpha_H^E (H_E^* - H_E) \quad \text{(F11)}$$

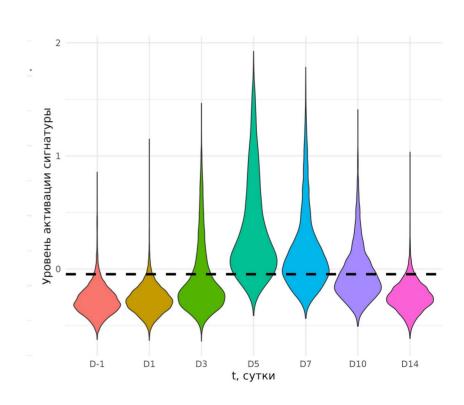
$$\frac{dH_B}{dt} = b_H^B [\rho_H^B M_{AP}(t - \tau_H^B) H_B(t - \tau_H^B) - M_{AP} H_B] - b_p^{H_B} M_{AP} H_B B + \alpha_H^B (H_B^* - H_B) \quad (F12)$$

$$\frac{dE}{dt} = b_p^E [\rho_E M_{AP}(t - \tau_E) H_E(t - \tau_E) E(t - \tau_E) - M_{AP} H_E E] - b_{EC} C_V E + \alpha_E (E^* - E) \quad (F13)$$

$$\frac{dB}{dt} = b_p^B [\rho_B M_{AP}(t - \tau_B) H_B(t - \tau_B) B(t - \tau_B) - M_{AP} H_B B] + \alpha_B (B^* - B)$$
 (F14)

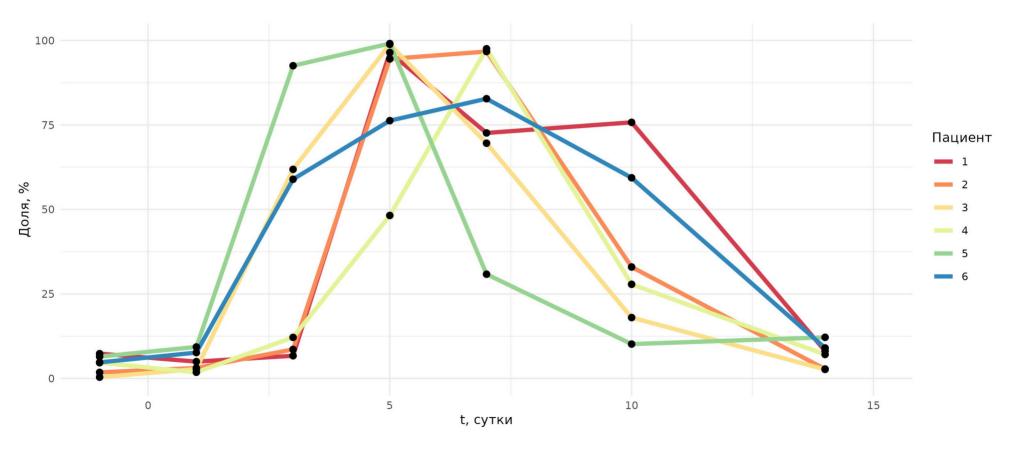

$$\frac{dP}{dt} = b_p^P \rho_P M_{AP}(t - \tau_P) H_B(t - \tau_P) B(t - \tau_P) + \alpha_P (P^* - P)$$
 (F15)


$$\frac{dF}{dt} = \rho_F P - \alpha_F F - \gamma_{FV} FV$$


(F10)

(F16)

$$\begin{split} V_{1}(t_{0}) &= V_{10}, \ \ V_{2}(t_{0}) = V_{20}, \ \ C_{V1}(t_{0}) = 0, \ \ C_{2}(t_{0}) = 0, \ \ m(t_{0}) = 0 \ \ , M_{I1}(t_{0}) = M_{I1}^{**}, \\ M_{I2}(t_{0}) &= M_{I2}^{**}, \ \ I(t_{0}) = I^{*}, \ \ M_{AP}, (t_{0}) = M_{AP}^{**}, \ \ C_{R}(t_{0}) = C_{R}^{*}, \\ H_{E}(t_{0}) &= H_{E}^{*}, \ \ H_{B}(t_{0}) = H_{B}^{*}, \ \ E(t_{0}) = E^{*}, \ \ B(t_{0}) = B^{*}, \ \ P(t_{0}) = P^{*}, \ \ F(t_{0}) = F^{*} \\ M_{AP}(s) &= 0, \ \ t_{0} - \tau \leq s < t_{0}, \ \ \tau = max(\tau_{H}^{E}, \tau_{E}, \tau_{B}, \tau_{P}) \\ H_{E}(s) &= H_{E}^{*}, \ \ t_{0} - \tau_{1} \leq s < t_{0}, \ \ \tau_{1} = max(\tau_{H}^{E}, \tau_{E}) \\ H_{B}(s) &= H_{B}^{*}, \ \ t_{0} - \tau_{2} \leq s < t_{0}, \ \ \tau_{2} = max(\tau_{H}^{B}, \tau_{B}, \tau_{P}) \\ E(s) &= E^{*}, \ \ t_{0} - \tau_{E} \leq s < t_{0} \\ B(s) &= B^{*}, P(s) = P^{*}, \ \ t_{0} - \tau_{3} \leq s < t_{0}, \ \ \tau_{3} = max(\tau_{B}, \tau_{P}) \end{split}$$



Динамика доли защищенных интерфероном клеток реснитчатого эпителия у пациентов с COVID-19

В образцах назальных мазков по данным одноклеточного РНК-секвенирования; Группа пациентов - устойчивый COVID-19

