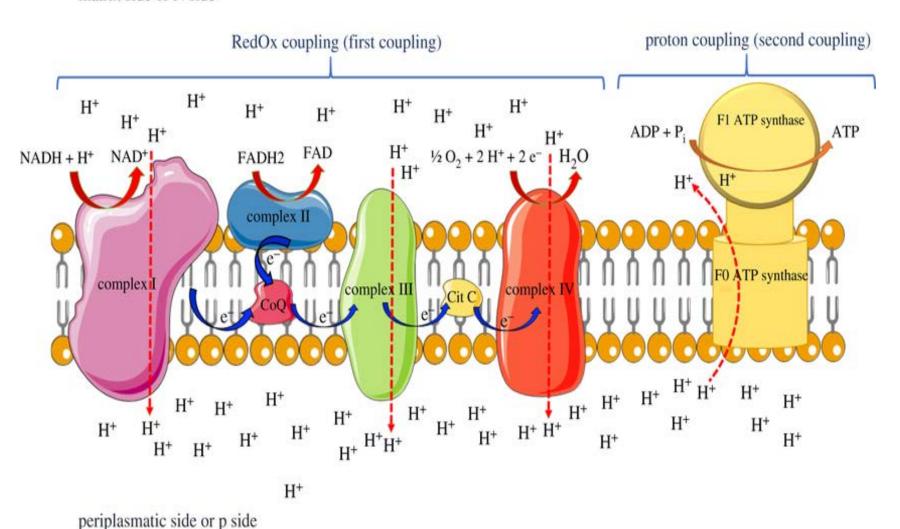
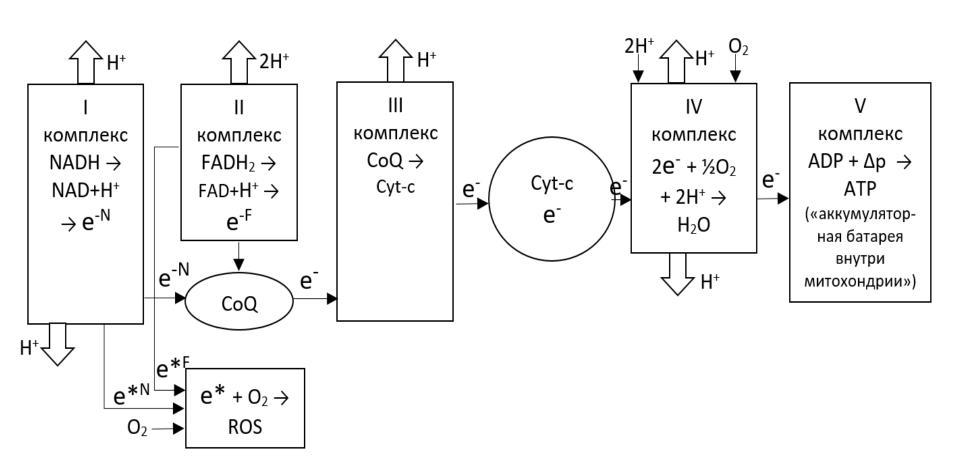


Федеральное государственное бюджетное учреждение науки Институт Проблем Управления им. В.А. Трапезникова Российской Академии Наук (ИПУ РАН)

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ МЕХАНИЗМА ДЕЙСТВИЯ МЕТИЛЕНОВОГО СИНЕГО ДЛЯ ВОССТАНОВЛЕНИЯ МИТОХОНДРИАЛЬНОЙ ФУНКЦИИ КЛЕТОК ПРИ ЗАБОЛЕВАНИЯХ МЕТАБОЛИЧЕСКОГО ПРОИСХОЖДЕНИЯ


Бабушкина Н.А. к.б.н., с.н.с.

Постановка задачи


- 1. Разработать математическую модель, описывающую движение электронов по дыхательной электрон-транспортной цепи в митохондриях клеток организма.
- 2. Разработать модель включения метиленового синего (МС) в модель движения электронов по электрон-транспортной цепи митохондрий.
- 3. Разработать математическую модель образования свободных радикалов и описать механизм включения МС в процесс снижения их численности в клетках организма.

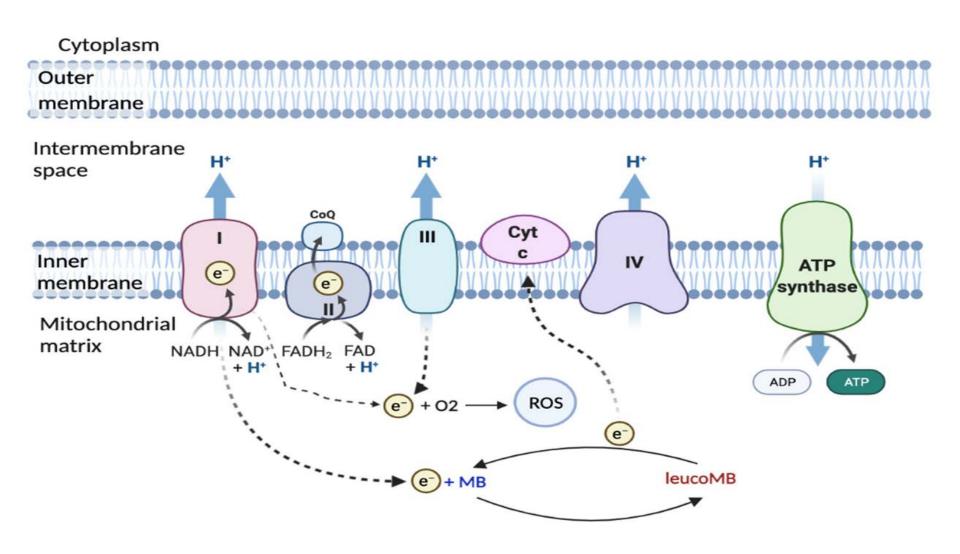
Компоненты дыхательной электрон-транспортной цепи во внутренней мембране митохондрии клеток организма

matrix side or N side

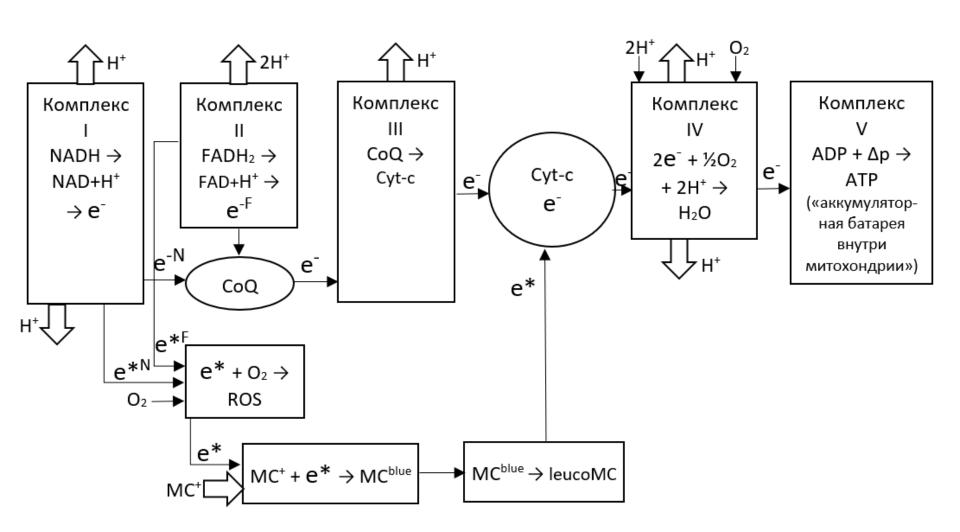
Блок-схема движения электронов по дыхательной электронтранспортной цепи во внутренней мембране митохондрии клеток организма, включая блок образования свободных радикалов ROS

Дифференциальные уравнения динамики суммарной численности электронов, образующихся в комплексах I и II

$$\frac{d}{dt}e^{sum}(t) = K_{st}(T_v) \cdot (e^N(t) + eF(t))$$


Первое уравнение учитывает влияние возрастных изменений на эффективность работы митохондриального дыхательного цикла, где

- $e^{sum}(t) = (e^{-N}(t) + e^{-F}(t))$ сумма электронов, образованных в Комплексах I и II, вошедших в дыхательную цепь
- $K_{st}(T_v)$ функция старения организма, которая отражает снижение образования электронов в Комплексах I и II; на момент рождения $K_{st}(0) = 1$.


$$\frac{d}{dt}ROS(t) = K_{ROS} \cdot e^*(t)$$

Второе уравнение учитывает расход свободных электронов $e^*(t)$, которые не включились в дыхательную цепь и расходуются на образование свободных радикалов ROS $(t) = K_{ROS} e^*(t)$

Компоненты дыхательной электрон-транспортной цепи в митохондрии совместно с включением МС в межклеточную жидкость митохондрии

Блок-схема включения МС в работу дыхательной цепи передачи электронов для аккумуляторных батарей клеток организма

Включение МС в работу дыхательной электронтранспортной цепи передачи электронов

МС в водном растворе приобретает положительный заряд и легко проходит через клеточные мембраны. Это позволяет ему присоединять часть свободных электронов е* из числа не попавших в дыхательную цепь переноса электронов. Количество присоединённых свободных электронов е* мс зависит от дозы МС и вычисляется следующим образом:

$$[e^*_{MC} = D_{MC} e^*]$$
, где

- D_{мс} введённая доза МС,
- е*_{мс} количество присоединённых свободных электронов,
- е* количество свободных электронов, не попавших в дыхательную цепь переноса электронов.

MC, присоединив часть свободных электронов е*, тем самым снижает их численность, что приводит к уменьшению численности образующихся свободных радикалов ROS в организме:

$$[ROS = K_{ROS} (e^* - e^*_{MC}), где$$

- е* свободные электроны, не попавшие в дыхательную цепь переноса электронов,
- e*_{мс} часть свободных электронов е*, присоединённых к дозе введенного МС в водном растворе,
- K_{ROS} скорость образования свободных радикалов.

Безопасность и дозировка МС

- МС оказывает очень разное влияние на организм в зависимости от применения его в небольшой или большой дозировке.
- Безопасными считаются дозы менее 2 мг\кг веса тела человека два раза в день. В более высоких дозах он может вызывать отравление.
- В низких дозах МС выступает как антиоксидант в митохондриях, улучшая эффективность работы митохондриальной электронтранспортной цепи. Это делает его перспективным кандидатом в качестве лекарственного средства против старения и лечения заболеваний мозга.
- С осторожностью могут применять МС люди, принимающие антидепрессанты.
- При лечении рака доза должна быть увеличена до 10 60 мг\кг в день на несколько приемов.
- Самая эффективная дозировка, если нет угрожающих для жизни состояний, составляет по 10 капель (5 мг) МС на 150 мл воды утром и вечером до еды без учета веса пациента.

Выводы

- Актуальность задачи математического описания движения электронов по дыхательной электрон-транспортной цепи в митохондриях клеток организма связана с применением МС для восстановления метаболизма клеток в организме.
- В настоящее время изучен расчёт доз, которые вычисляются в зависимости от массы тела человека в мг/кг.
- Однако интервалы между введениями и продолжительность приёма МС не установлены. Врачи определяют это по отдельным индивидуальным показателям в зависимости от вида заболевания.
- Математическое моделирование воздействия МС на восстановление метаболизма клеток организма позволит обосновать расчёт применяемых доз и интервалов между их применением.

Спасибо за внимание!

