

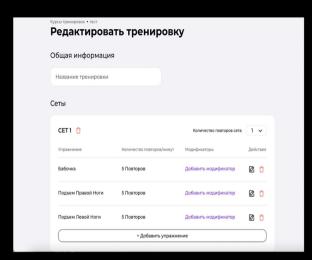
XVII конференция «Математические модели и численные методы в биологии и медицине»

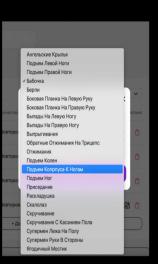
Математическое моделирование и машинное обучение в единоборствах

Докладчики:

Артемий Елисеев, технический директор ООО «Лайн-Спорт»

Борисова Анастасия, генеральный директор ООО «Фора Вижен Интеллектуальные системы»


ООО «Лайн Спорт»


Компания производитель аналоговых и цифровых спортивных снарядов для единоборств

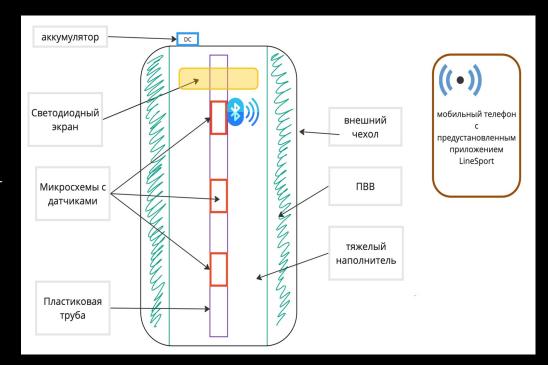
ООО «Фора Вижен Интеллектуальные Системы» ИТ-компания, занимающаяся разработками программного обеспечения для автоматического отслеживания выполнения физических упражнений, с использованием технологий ИИ и компьютерного зрения FORA VISION, разработкой математических моделей с использованием нейросетей, вебприложений.

FORA VISION – система автоматического контроля выполнения упражнений

Проблема

- Существующие снаряды дают неточные и нестабильные оценки силы
- Нужен привычный мешок, который удобно использовать ежедневно и который даёт воспроизводимые данные

Задача


- Сделать аппаратно-программный продукт: привычный мешок + измерительная система
- Получать точную оценку силы удала для тренировок и анализа

Решение

Аппарат + программная модель

- Встроенный аппаратный комплекс: акселерометры + микроконтроллер
- Физическая модель, как базовая
- Корректировка деформации через коэффициент, обучаемая ML-модель

@Tuson

Физическая модель на акселерометрах

Использовали трехосные акселерометры

Интеграции ускорения

Приближённая оценка изменения импульса

Модель показала

Мешок как физическое тело вносит значимую погрешность

Артемий Елисеев

@Tuson

Энергетическая декомпозиция

Энергия удара = движение + деформация

Энергия перемещения

Кинетическая часть мешка

Энергия деформации

Упругая и диссипативная

Деформацию оценили по сжатию

добавили поправочный коэффициент

Сбор датасета: снаряд + стенд

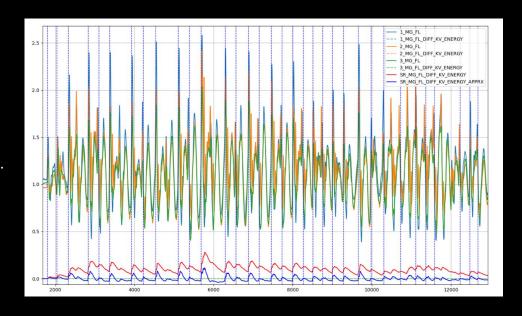
- Стенд с жесткой фиксацией снаряда и эталонными ударами
- Разные уровни ударов, разные зоны снаряда

Выбор модели: CatBoost

Причины

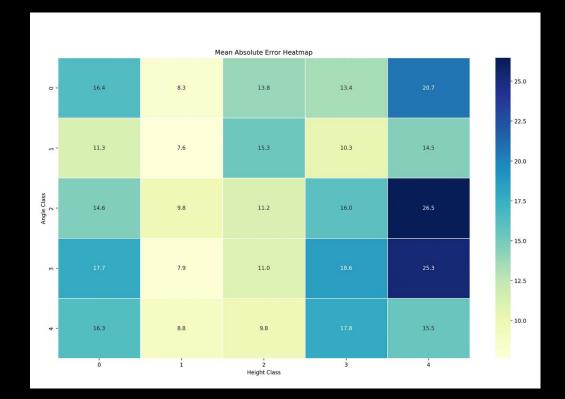
Удобство инференса, гибкость при обучении, конструирование признаков

Решали

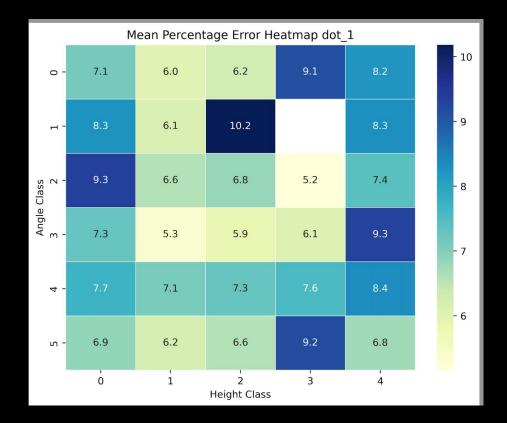

Задачу регрессии, а именно: предсказывали импульс силы при ударе по мешку, который предварительно был рассчитан для обучающих и контрольных наблюдений.

Особенность и новация нашей реализации

Корректировка более "сложной моделью" (кэтбустом) более простой - физической. Физическая модель учитывает массу мешка и передаваемое ему в единицу времени ускорение.



Результаты


Значительно улучшилось предсказание силы удара с 10-30% до 5-10%

Результаты

Значительно улучшилось предсказание силы удара с 10-30% до 5-10%

Практическое применение

- Тренеры: контроль тренировок и отслеживание прогресса
- Спортсмены: отслеживание собственного прогресса силы
- Соревнования: возможность проведения онлайн соревнований, применение в адаптивном спорте

Перспективы развития **развития**

- Переход на нейросети для более точного улавливания динамических паттернов
- Оптимизация железа: добавление датчиков, увеличение вычислительной мощности
- Персонализация тренировок под спортсмена и тренера.

Выводы

- Традиционная физическая модель даёт базу, но снаряд, как неидеальное физическое тело вносит значимые погрешности.
- Gradient boosting эффективно корректирует предсказания в условиях ограниченного железа.
- Следующий шаг модель на основе нейросети.

Связаться

Артемий Елисеев

+7 926-627-84-77

tg: @Tuson

