Математические модели тромбообразования в потоке крови в движущейся области

 $\mathbf{HO}.\mathbf{B}.\mathbf{B}$ асилевский 1,2,3 $\mathbf{K}.\mathbf{M}.\mathbf{T}$ ерехов 1,3

¹ИВМ РАН ²ПМГМУ

3МФТИ

XVII конференция "Математические модели и численные методы в биологии и медицине"

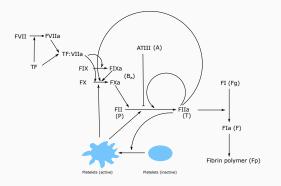
17.10.2025

Two basic mechanisms of coagulation

Basic mechanisms:

- ullet primarily fibrin polymerization (e.g. due to tissue injury) ightarrow red clot
- \bullet primarily platelet adhesion (due to increased shear stress) \rightarrow white clot

Two basic mechanisms of coagulation


Basic mechanisms:

- ullet primarily fibrin polymerization (e.g. due to tissue injury) ightarrow red clot
- \bullet primarily platelet adhesion (due to increased shear stress) \rightarrow white clot

Tissue factor (TF) exposed in vessel injury of

- ullet arteries: platelets adhere to subendothelium o white clot
- ullet veins: fibrin propagates earlier and prevents platelets from aggregating o red clot (platelets accelerate production of fibrin mesh)

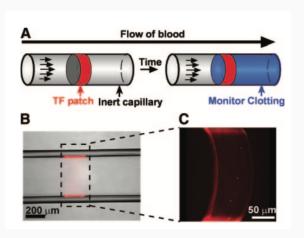
Blood coagulation caused by injury of vein

prothrombin P (factor FII) thrombin T (factor FIIa) antithrombin A (factor ATIII) fibrinogen G (factor FI) fibrin F (factor FIa) fibrin polymer Minactive platelets ϕ_f active platelets ϕ_a tissue factor TF

Equation of the model for blood coagulation

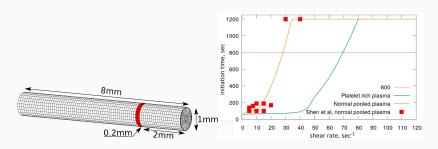
Navier–Stokes equations & Brinkman term: div (u) = 0
$$\partial_t \mathbf{u} + \text{div} \left(\mathbf{u}\mathbf{u}^T - \nu_b \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T\right) + p\mathbb{I}\right) + \frac{\nu_b}{\iota \iota} \mathbf{u} = \mathbf{0}$$

Coagulation eqs. for blood factors (prothrombin P, thrombin T, tissue factors B, antithrombin A, fibrinogen


G, fibrin F, fibrin polymer M, platelets
$$\phi_f$$
, ϕ_a)

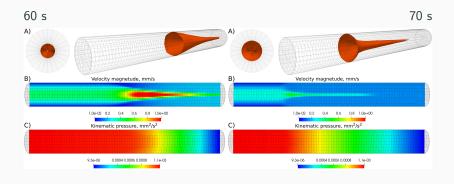
$$\begin{array}{l} \text{n polymer } \textit{M, platelets } \phi_f, \phi_a) \\ \partial_t P + \operatorname{div} \left(\mathbf{u} P - D \nabla P \right) = - \left(k_1 \phi_a + k_2 B + k_3 T + k_4 T^2 + k_5 T^3 \right) P \\ \partial_t T + \operatorname{div} \left(\mathbf{u} T - D \nabla T \right) = \left(k_1 \phi_a + k_2 B + k_3 T + k_4 T^2 + k_5 T^3 \right) P - k_6 A T \\ \partial_t B + \operatorname{div} \left(\mathbf{u} B - D \nabla B \right) = \left(k_7 \phi_a + k_8 T \right) \left(B^0 - B \right) - k_9 A B \\ \partial_t A + \operatorname{div} \left(\mathbf{u} A - D \nabla A \right) = -k_6 A T - k_9 A B \\ \partial_t G + \operatorname{div} \left(\mathbf{u} G - D \nabla G \right) = -k_{10} T G \left(k_{11} + G \right)^{-1} \\ \partial_t F + \operatorname{div} \left(\mathbf{u} F - D \nabla F \right) = k_{10} T G \left(k_{11} + G \right)^{-1} - k_{12} F \\ \partial \phi_f + \operatorname{div} \left(k (\phi_f, \phi_a) \left(\mathbf{u} \phi_f - D_p \nabla \phi_f \right) \right) = - \left(k_{13} T + k_{14} \phi_a \right) \phi_f \\ \partial_t A + \operatorname{div} \left(k (\phi_f, \phi_a) \left(\mathbf{u} \phi_a - D_p \nabla \phi_a \right) \right) = \left(k_{13} T + k_{14} \phi_a \right) \phi_f \\ \partial_t M = k_{12} F \\ \frac{1}{K} = \frac{16}{r^2} S^{3/2} \left(1 + 56 S^3 \right) \frac{\phi_f + \phi_a}{\phi_f - \phi_a} \\ k (\phi_f, \phi_a) = \tanh \left(\pi \frac{\phi_{\text{max}} - \phi_f - \phi_a}{\phi_{\text{max}}} \right), \qquad S = \min\{0.7; M/7000\} \end{array}$$

+ initial and boundary conditions

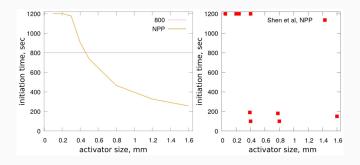

Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., Volpert, V.: A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PloS one, 15(7), e0235392, 2020

Experiment in microfluidic capillaries

Shen F., Kastrup C.J., Liu Y., Ismagilov R.F.: Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate. Arteriosclerosis, thrombosis, and vascular biology. 2008, 28(11): 2035-2041.


Numerical experiment in microfluidic capillaries

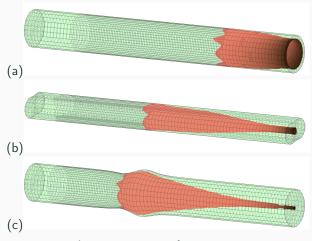
For shear rate $< 30 \mathrm{s}^{-1}$ the flow of the normal pooled plasma is occluded at $t \sim 180 \mathrm{s}$.


Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., Volpert, V.: A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PloS one, 15(7), e0236392, 2020

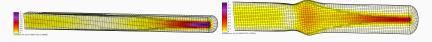
Numerical experiment in microfluidic capillaries

Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., Volpert, V.: A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PloS one, 15(7), e0236592, 2020

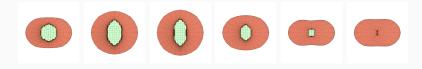
Numerical experiment in microfluidic capillaries



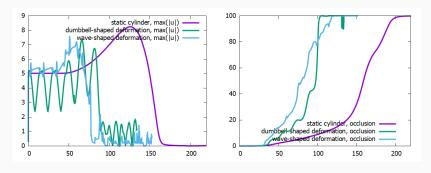
Clotting initiation time for normal pooled plasma and platelates rich plasma as a function of TF patch size for shear rate $40\mathrm{s}^{-1}$


Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., Volpert, V.: A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PloS one, 15(7), e0235392, 2020

Dumbbell-shaped deformation and pulse-wave deformation at $t=8\mathrm{s}.$ The outflow is to the left; the deformation is periodic with period $16\mathrm{s}.$



Normal pooled plasma, K^{-1} -isosurface 100 (mm $^{-2}$) at t = 87 s for (A) static capillary, (B) dumbbell-shaped deformation and (C) pulse-wave deformation. The outflow is to the right



Velocity magnitude $|\mathbf{u}| \in [0,3] \mathrm{\ m/s}$ at $t=87 \mathrm{\ s}$ for dumbbell-shaped and pulse-wave deformations. The outflow is to the right.

At $K^{-1}=100~\text{mm}^{-2}$ the fluid flow is obstructed by the clot: $|\mathbf{u}|$ drops in region with $K^{-1}\geq 100~\text{mm}^{-2}$

Front view of K^{-1} -isosurface 100 mm $^{-2}$ at $t=\{75,78,81,84,87,90\}$ s for dumbbell-shaped deformation

Maximal velocity

Volumetric occlusion

$$V_{occ} = rac{1}{|\Omega|} \sum_{\omega_i} |\omega_i| \max\left(0.01 \mathcal{K}^{-1}, 1
ight) \cdot 100$$

Conclusion

- The proposed model for fibrin ("red") clot formation relates platelets, blood flow, tissue factors, and other elements of hemostasis
- The model fits coagulation experiments with PRR and NPP in microfluidic capillaries
- Pulsating capillaries accelarate clotting