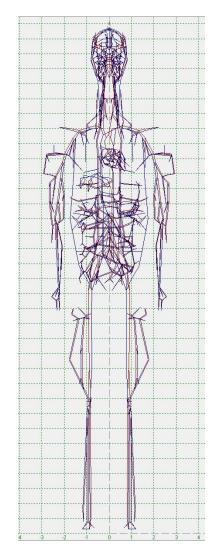


Московский государственный университет Факультет вычислительной математики и кибернетики

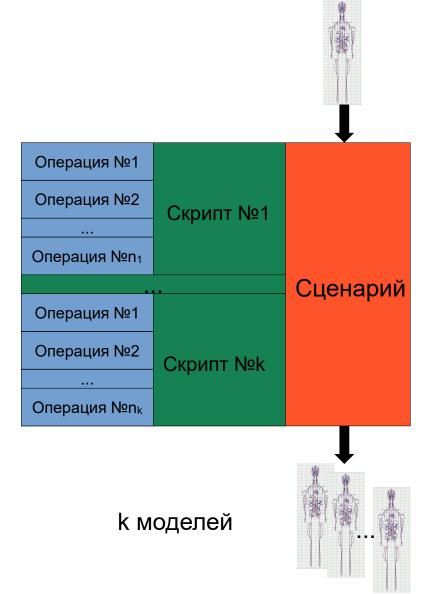

Разработка принципов создания синтетических баз данных на основе прямого математического моделирования гемодинамики

Кочетов Е. В., Абакумов М.В., Буничева А. Я., Мухин С. И.

Математическое моделирование гемодинамики

- Производится моделирование сердечнососудистой системы человека при помощи программного комплекса CVSS.
- Математическое моделирование гемодинамики осуществляется в квазиодномерном приближении. На каждом сосуде решается система уравнений:

$$\begin{cases} \frac{\partial S}{\partial t} + \frac{\partial uS}{\partial x} = 0, \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = -8\pi \nu \frac{u}{S}, \\ S = S(p). \end{cases}$$



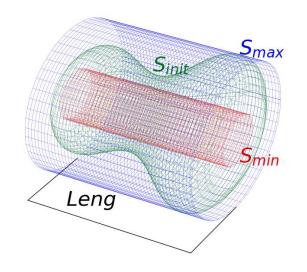
Основные цели

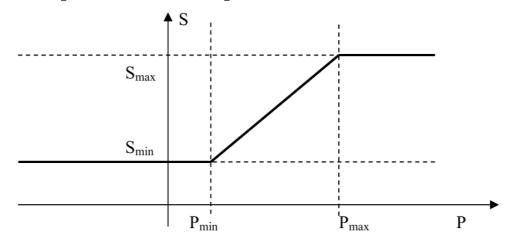
- Масштабирование возможностей моделирования в направлении генерации большого объёма данных
- Создание синтетических баз данных методами прямого математического моделирования
- Отработка применения методов диагностики средствами ИИ

Развитие процедуры моделирования

- Необходима возможность автоматического множественного клонирования моделей графа путем задания соответствующего сценария изменений.
- Введем понятия схемы клонирования моделей:
 - 1) Операция атомарное изменение одного из параметров группы сосудов/узлов.
 - 2) Скрипт совокупность произвольного количество операций.
 - 3) Сценарий объединение любого количества скриптов.

Сосуды:


Изменяемые параметры


• Уравнение состояния сосуда S(p):

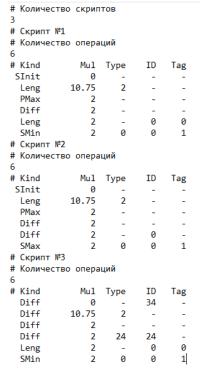
$$s(p) = \begin{cases} s_{\min} + \frac{s_{\max} - s_{\min}}{p_{\max} - p_{\min}} (p - p_{\min}), & p_{\min}$$

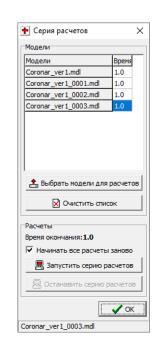
где s_{\min} , s_{\max} , p_{\min} , p_{\max} являются характеристиками данного сосуда.

• Длина сосуда Leng:

Узлы:

• Коэффициент проницаемости $K_{D,k}$ $u_{i_2,k}$ $S_{i_2,k} = K_{D,k}$ $(p_{i_1,k} - p_{i_2,k})$


$$\begin{array}{c}
k \\
\hline
 i_1 \\
\hline
\end{array}$$


Реализация в интерфейсе

Задание сценария через интерфейс Задание сценария через текстовый Запуск расчетов 🗙 🛨 Операция Сценарий клонирования

файл

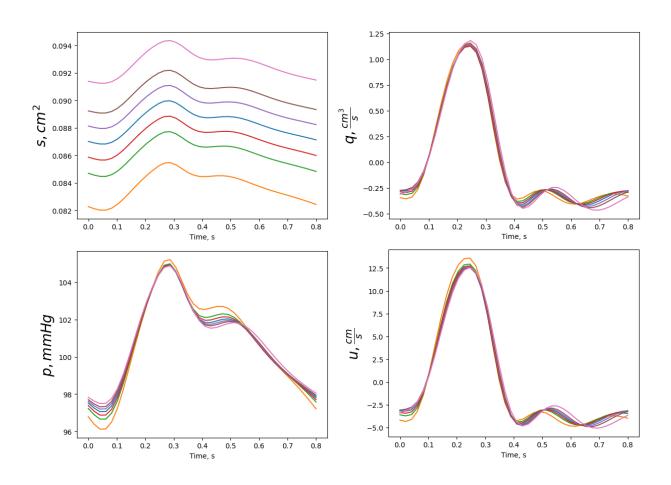
Пример использования

Хотим получить вариацию модели по росту и комплекции:

- 1) Можем увеличить длину некоторой группы сосудов: $\|\tilde{l}\| = (1 + \alpha)\|l\|$.
- 2) Можем дополнительно потребовать изменение S.

В стационарном случае: $\Delta p = -8\pi\nu\rho\frac{Q}{S^2}l$

Можем потребовать: $\frac{8\pi v\rho l}{S^2}$ = const


Тогда для S: $\tilde{S} = \sqrt{\frac{\tilde{I}S^2}{l}} = \sqrt{(1+\alpha)}S$. Или же в терминах S_{min} , S_{max} $\tilde{S}_{min} = \sqrt{(1+\alpha)}S_{min}$, $\tilde{S}_{max} = \sqrt{(1+\alpha)}S_{max}$

3) Можем потребовать изменения параметров сердца. Например, изменение ударного объема V_S : $Q_A(t) = \begin{cases} V_S(4t-\frac{3t^2}{\tau_s})\frac{1}{\tau_s^2}, & 0 \leq t \leq \tau_s, \\ 0, & \tau_s \leq t \leq \tau_d + \tau_s, \end{cases}$

Ударный объем можно менять следующим образом: $ilde{V_s} = (1+lpha)^{(rac{3}{2}b+a)}V_s$

Константы а и b из формул для расчета BSA. Наиболее частое $~a=b=rac{1}{2}$

Получение данных

- Используя возможности задания сценариев в рамках работы с CVSS сгенерированы базы данных размера: 2700, 3600, 4500, 5600.
- Произведены расчеты до установления квазипериодического режима.
- Получены данные давления, скорости, потока на заданном отрезке времени.
- Получили синтетическую базу данных, на которой можно ставить почти любые задачи машинного обучения.

Пример использования

- Рассмотрены задачи дискриминативного машинного обучения с учителем: классификация и регрессия.
- Пример задачи классификации: диагностика патологий кровотока по периферийным данным.
- Пример задачи регрессии: восстановление значений кровотока в органах.
- В некоторых случаях увеличение выборки приводило к существенному

	0	1	2	3	4	5		0	1	2	3	4	5
0	1.0	0.493	0.515	0.543	0.669	0.659	0	1.0	0.543	0.661	0.898	0.994	0.989
1	0.493	1.0	0.507	0.565	0.687	0.670	1 0.5	543	1.0	0.563	0.891	0.993	0.981
2	0.515	0.507	1.0	0.537	0.669	0.657	2 0.0	661	0.563	1.0	0.870	0.991	0.991
3	0.543	0.565	0.537	1.0	0.635	0.602	3 0.8	898	0.891	0.870	1.0	0.987	0.985
4	0.669	0.687	0.669	0.635	1.0	0.526	4 0.9	994	0.993	0.991	0.987	1.0	0.854
5	0.659	0.670	0.657	0.602	0.526	1.0	5 0.9	989	0.981	0.991	0.985	0.854	1.0

Заключение

- Была разработана и реализована возможность создания больших синтетических баз данных кровотока на основе программного комплекса CVSS.
- Создание таких баз данных позволяет отрабатывать применение методов машинного обучения для задач диагностики.

Спасибо за внимание!