

17.10.2025

Горина Анастасия

младший научный сотрудник, аспирант

Институт бионических технологий и инжиниринга, Сеченовский Университет gorina_a_v@staff.sechenov.ru

Гемодинамический анализ больших аневризм головного мозга в условиях моделирования покоя и физической нагрузки

Горина А.В., Коновалов А.Н., Гребенев Ф.В., Телышев Д.В.

Актуальность работы

250 млн человек живут с диагностированной церебральной аневризмой

45%

случаев разрыва церебральной аневризмы приводит к летальному исходу

33%

выживших после разрыва церебральной аневризмы получают серьёзные последствия для здоровья

20%

случаев диагностированных церебральных аневризм носят множественный характер

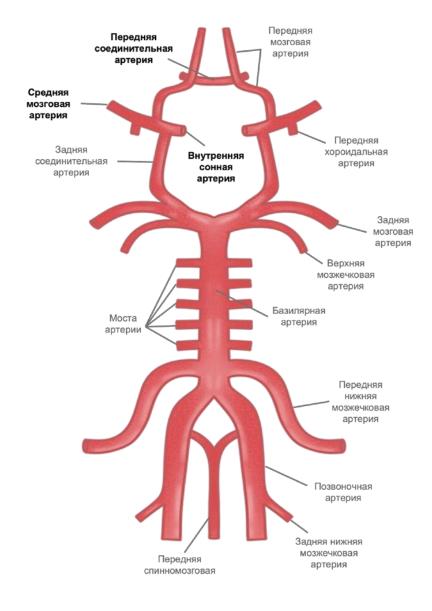


Рисунок – Анатомическое строение круга Виллиса с обозначением зон повышенного риска формирования церебральных аневризм

Гемодинамические параметры

WSS

Wall Shear Stress

 $\tau_i = \frac{\mu \omega}{C_s^2 \rho} f_{\alpha}^{neq} C_{\alpha j} n_j (C_{\alpha i} - C_{\alpha k} n_i j_k)$

Воспалительное

0,3

0.4

Тромбообразование [Па]

TAWSS – Time-Averaged Wall Shear Stress

 $TAWSS = \frac{1}{T} \int_0^T |\tau_w| dt$

WSSG

Wall Shear Stress Gradient

$$WSSG = \sqrt{\left(\frac{\partial \tau_i}{\partial x}\right)^2 + \left(\frac{\partial \tau_i}{\partial y}\right)^2 + \left(\frac{\partial \tau_i}{\partial z}\right)^2}$$

Разрушение эндотелиального слоя

[Па/мм]

[C]

OSI

Oscillatory Shear Index

$$OSI = \frac{1}{2} \left(1 - \frac{\int_0^T \tau_w dt}{\int_0^T |\tau_w| dt} \right)$$

Разрушение эндотелиального слоя

RRT

Relative Residence Time

$$RRT = \frac{1}{(1 - 2 \times OSI) \times TAWSS}$$

Разрушение

0,3

Тромбообразование

Исследование кровотока в больших аневризмах при моделировании разных уровней

физиологической активности

Таблица – Геометрические характеристики моделей сосудов

Модель	Максимальный диаметр купола, мм	Диаметр афферентного сосуда (inlet), мм	Диаметр эфферентного сосуда (outlet), мм
Пациент №1	18,46	2,54	2,24
Пациент №2	17,68	1,65	1,78
Пациент №3	21,54	4,14	4,45
Пациент №4	23,27	2,01	1,63
Синтетическая №1	16,96	2,59	2,19
Синтетическая №2	16,52	1,87	1,66
Синтетическая №3	18,22	4,03	5,26
Синтетическая №4	25,97	3,27	3,41

Граничные условия расчётной модели

$$\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) = -\nabla p + \mu \nabla u$$

 $\rho = 1050 \, \text{kg/m}^3$

 $\mu = 4$ мПа · с

 $p_{outlet} = 0$ Па

Расчётная сетка

Модели пациентов №1, №2 и синтетические моделей №1, №2, №3 – 150 000 ячеек

Модели пациентов №3, №4 и синтетическая модель №4 – 250 000 ячеек

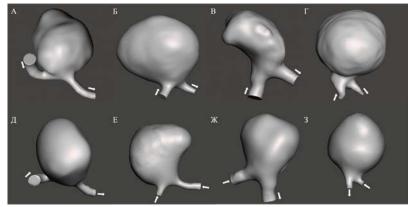


Рисунок 1 – 3D модель участка сосуда с аневризмой, построенная по результатам КТ, стрелками обозначено направление потока крови (А, Б, В, Г – пациент №1, №2, №3, №4, Д, Е, Ж, 3 – синтетические модели №1, №2, №3, №4)

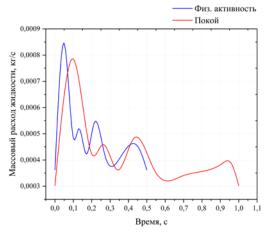


Рисунок 2 – Данные массового расхода жидкости для пациента

Результаты моделирования

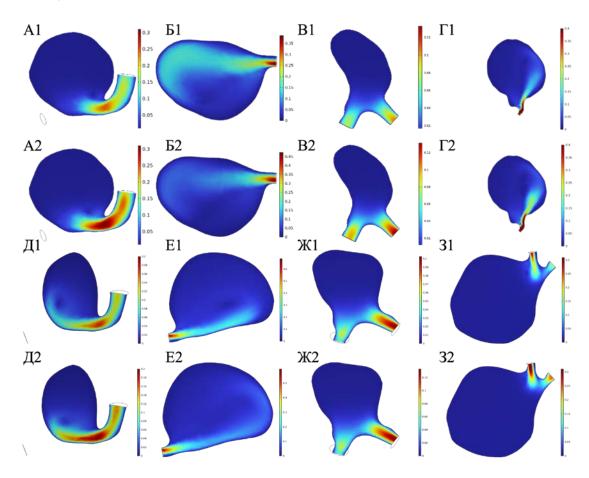


Рисунок 1 – Распределение скоростей (м/с) в состоянии покоя (А, Б, В, Г – пациент №1, №2, №3, №4, Д, Е, Ж, 3 – синтетические модели №1, №2, №3, №4) и при физической нагрузке (А1, Б1, В1, Г1 – пациент №1, №2, №3, №4, Д1, Е1, Ж1, З1 – синтетические модели №1, №2, №3, №4,

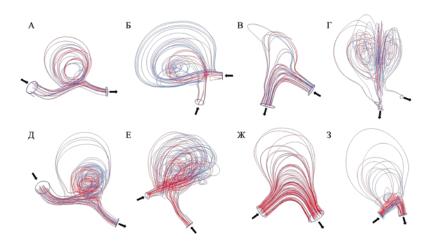


Рисунок 2 – Линии тока в куполе аневризмы (красные линии - состояние покоя, синие линии - состояние физической нагрузки): (А, Б, В, Г – пациент №1, №2, №3, №4, Д. Е. Ж, 3 – синтетические модели №1, №2, №3, №4)

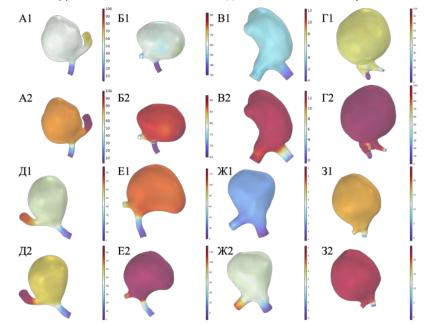


Рисунок 3 – Распределение давления (Па) в состоянии покоя (А, Б, В, Г – пациент №1, №2, №3, №4, Д, Е, Ж, 3 – синтетические модели №1, №2, №3, №4) и при физической нагрузке (А1, Б1, В1, Г1 – пациент №1, №2, №3, №4, Д1, Е1, Ж1, З1 – синтетические модели №1, №2, №3, №4)

Результаты моделирования WSS и OSI

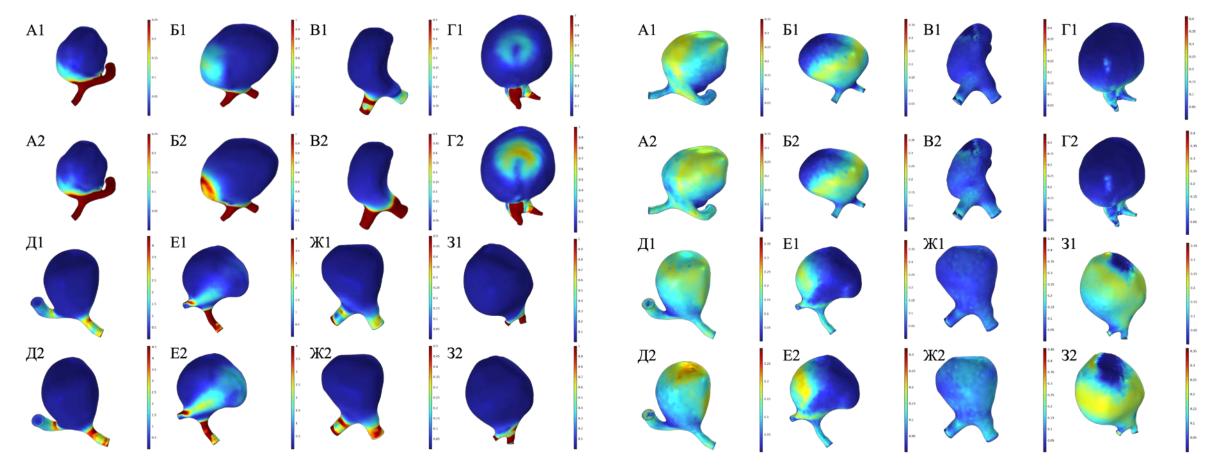
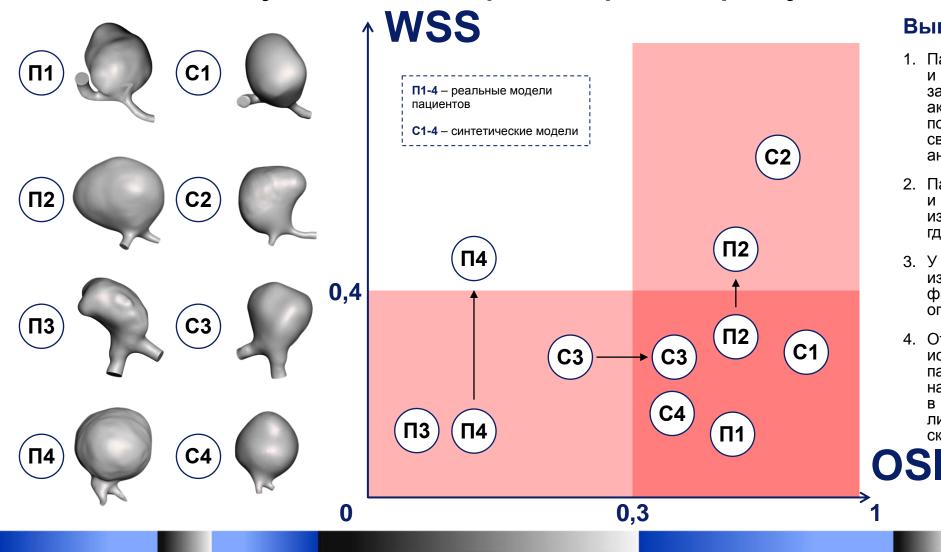



Рисунок 1 – WSS (Па) в состоянии покоя (А, Б, В, Г – пациент №1, №2, №3, №4, Д, Е, Ж, З – синтетические модели №1, №2, №3, №4) и при физической нагрузке (А1, Б1, В1, Г1 – пациент №1, №2, №3, №4, Д1, Е1, Ж1, З1 – синтетические модели №1, №2, №3, №4)

Рисунок 2 – OSI в состоянии покоя (А, Б, В, Г – пациент №1, №2, №3, №4, Д, Е, Ж, 3 – синтетические модели №1, №2, №3, №4) и при физической нагрузке (А1, Б1, В1, Г1 – пациент №1, №2, №3, №4, Д1, Е1, Ж1, З1 – синтетические модели №1, №2, №3, №4)

Анализ полученных параметров в результате моделирования

Выводы:

- 1. Параметры кровотока пациента и синтетических моделей С1 и С4, вне от уровня физической зависимости активности, находятся зоне риска, может повышенного что свидетельствовать об активном росте аневризмы и повышенном риске разрыва
- 2. Параметры кровотока пациентов П3 и П4 и синтетической модели С2, несмотря на изменение состояния, находятся в зонах, где риск разрыва минимален
- 3. У пациента П2 и синтетической модели С3 изменение кровотока при изменении физической активности влияло определение зоны риска
- 4. Отсутствие изменения WSS и OSI не исключают резкого изменения других параметров (давления и скорости). У ПЗ наблюдается резкое увеличение давления в 3 раза, у C2 значительное изменения линий тока, у П1 увеличение значений скорости на входи в аневризму.

Цифровая трассерная визуализация (ЦТВ)

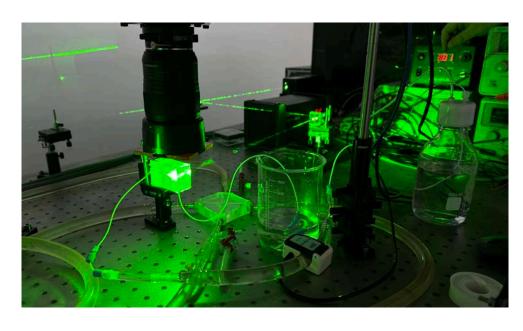


Рисунок 1 - Внешинй вид испытательного стенда

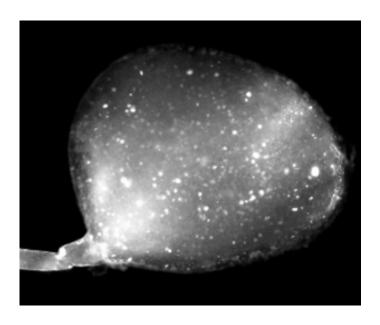


Рисунок 2 - Визуализация частиц в потоке исследуемой жидкости в фантоме реальной геометрии

Требования к фантому для проведения стендовых испытаний:

- о высокая прозрачность материала
- о низкий уровень оптических искажений
- о соответствие анатомическим особенностям реальной геометрии

- о гладкость внутренней поверхности
- о возможность создания эластичности, близкой к реальному сосуду
- о отсутствие адгезии флюоресцентных частиц с материалом фантома

Печать из фотополимерной смолы

Рисунок 1 – Геометрия модели аневризмы с толщиной стенки 0,5 мм

Рисунок 4 – Геометрия модели аневризмы с толщиной стенки 2 мм

Рисунок 2 – Напечатанный фантом аневризмы методом LCD

Рисунок 5 – Напечатанные методом LCD фантомы до отверждения в ультрафиолетовой камере

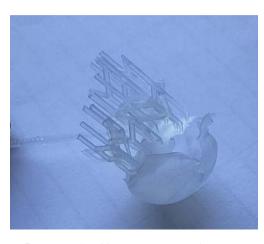


Рисунок 3 — Напечатанный фантом аневризмы после отверждения

Рисунок 6 – Напечатанный фантом аневризмы после отверждения

Создание тонкостенного фантома сосуда

Технология послойного погружения

Рисунок 1 – Процесс создания тонкостенного фантома сосуда послойным погружением пластиковой модели в силикон

Фиксированная толщина стенки

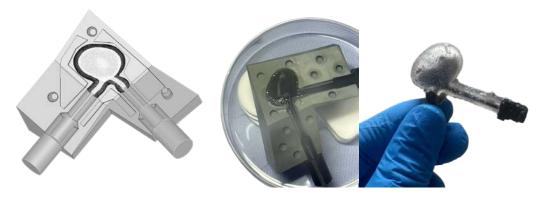


Рисунок 2 – Процесс создания фантома сосуда с фиксированной толзиной стенки

Результаты компьютерного моделирования и ЦТВ

Условия эксперимента:

- о динамический поток жидкости
- о жёсткая стенка в компьютерной модели
- исследуемая жидкость для стендовых испытаний водный раствор с флуоресцентными микрочастицами
- о параметры для компьютерного моделирования: $\rho = 1050~{\rm kr/m^3}$; $\mu = 4~{\rm m\Pi a \cdot c}$; $p_{outlet} = 0~{\rm \Pi a}$

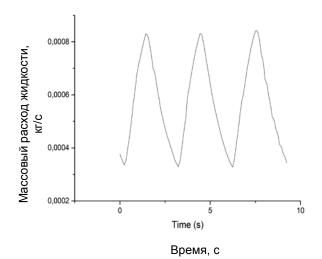


Рисунок 1 — Зависимость массового расхода жидкости от времени для реальной модели

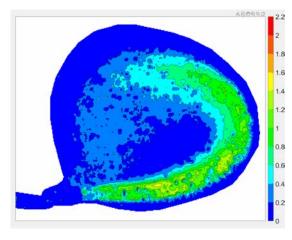


Рисунок 2 – Распределение скоростей, полученное на ЦТВ (дм/с)

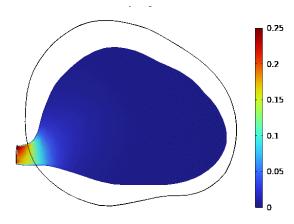


Рисунок 3 – Распределение скоростей, полученное при моделировании (м/с)

Корреляция морфологических и гемодинамических признаков

Современные клинические шкалы оценки состояния аневризм:

PHASES

модель оценки риска разрыва аневризмы

ELAPSS

модель оценки риска роста аневризмы

				Критерий	Баллы
				Европа, Северная Америка	0
	Р	-	Population	Япония	3
				Финляндия	5
	ш	-	Hypertension	Нет	0
	п			Да	1_
5	Λ	-	Age	<70 лет	0
	A			≥70 лет	1
			Size of aneurysm	<7 мм	0
	S			от 7 до 10 мм	3
	3			от 10 до 20 мм	6
				≥20 мм	10
E S			Earlier subarachnoi	id ^{Нет}	0
			hemorrhage	Да	1
		S -	Site of aneurysm	BCA	0
	S			CMA	2
				ПМА, ЗСА	4

	Критерий	Баллы
Earlier subara	chnoid ^{Нет}	0
hemorrhage	Да	1
	BCA	0
Location	CMA	3
	ПМА, ЗСА	5
A - Age	<60 лет	0
Age	≥60 лет	1
	Европа, Китай, Северная Америка	0
Population	Япония	1
	Финляндия	7
	<3 мм	0
S - Size of aneury	от 3 до 5 мм	4
- Olze of affects	от 5 до 7 мм	10
	≥7 мм	22
S - Shape	Правильная форма	0
- Shape	Неправильная форма	4

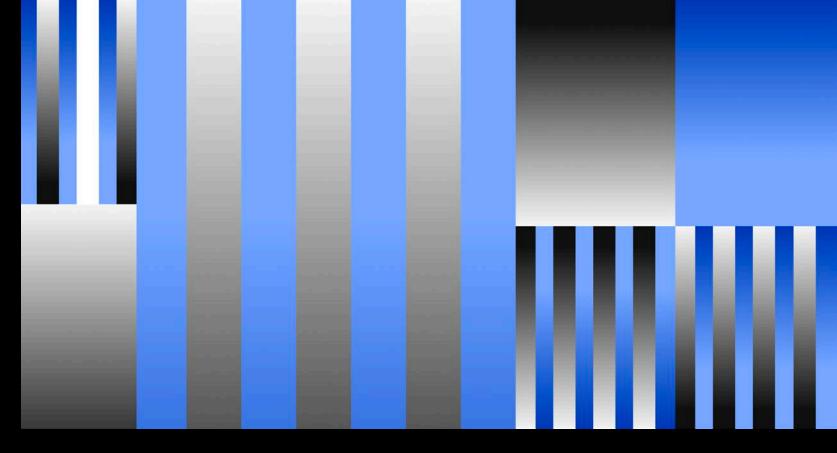
Гемодинамические параметры оценки кровотока:

Гемодинамические и биологические признаки формирования

WSS – напряжение сдвига стенки
WSSG – градиент напряжения сдвига стенки
OSI – индекс колебательного сдвига
RRT – относительное время пребывания

Выводы

- 1. Изменение гемодинамических параметров при физической нагрузке могут значительно влиять на оценку риска разрыва аневризмы, что необходимо учитывать в клинической практике. Проведенные исследования закладывают основу для разработки персонализированных подходов к прогнозированию течения заболевания и выбору тактики лечения пациентов с церебральными аневризмами.
- 2. Комбинация гемодинамических параметров (WSS, OSI, RRT) с клиническими шкалами (PHASES, ELAPSS) повышает точность прогнозирования риска разрыва аневризмы по сравнению с использованием только морфологических или клинических критериев. Интеграция результатов моделирования в клинические шкалы позволит создать персонализированные модели оценки риска.
- 3. Используемые технологии изготовления фантомов позволяют создавать антропоморфные модели, адекватно воспроизводящие геометрию и свойства реальных сосудов, что подтверждается результатами стендовых испытаний. Разработанный протокол постобработки фантомов позволяет минимизировать оптические искажения и обеспечивает воспроизводимость результатов. Полученные результаты подтверждают перспективность использования бионических фантомов в качестве тестовых систем для отработки хирургических вмешательств и оценки эффективности эндоваскулярных имплантов.
- 4. Качество фантомов напрямую влияет на достоверность экспериментальных данных. Для адекватного воспроизведения физиологических условий необходимо обеспечить оптическую прозрачность, геометрическую точность воспроизведения анатомии, механические свойства, близкие к нативной ткани и стабильность характеристик в условиях циклических нагрузок
- 5. Перспективным направлением является разработка стандартизированных протоколов изготовления фантомов и проведения измерений, что позволит сравнивать результаты между различными исследовательскими центрами и повысить воспроизводимость исследований.



17.10.2025

Горина Анастасия

младший научный сотрудник, аспирант

Институт бионических технологий и инжиниринга, Сеченовский Университет gorina_a_v@staff.sechenov.ru

Гемодинамический анализ больших аневризм головного мозга в условиях моделирования покоя и физической нагрузки