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STRUCTURE OF POLYMER

◦ POLYMER consists of very large molecules, macromolecules
with many repeating subunits.

◦ One or more species of MONOMERS.
◦ EXAMPLES: polyethylene, nylon and so on.
◦ BIOLOGY: polypeptides, polynucleotides, DNA, RNA.

L ≈ 1 − 10 nm (10−9 − 10−8 m)

L ≈ 2m!, m ≈ 10−12g



STRUCTURE OF POLYMER

Microstructures of a polymer

From long line chain −→ To clew, ball

Chain conformation
Radius of gyration = average distance from the center of mass of
the chain to the chain itself



POLYMER CHAIN IN FLUID

CHAIN CLEW

Micro - thermal fluctuations covalent bond, noncovalent weak
chemical attractions, hydrogen bonds Van der Waals forces.
Macro - drug force, Stokes’ law.



STOCHASTIC, BROWN MOTION
COMPONENT

Vector r = (r i ), MICROSCOPIC model, Langevin equation,
stochastic DE.

r t = − 1
2λ

f (r)r +∇u · r +
√

L2

λ
W (t)

Where:
◦ u - velocity
◦ λ - relaxation time
◦ L2 - parameter of thermofluctuations
◦ W (t) - random fluctuating force (white noise)



Statistical Physics + Ito Calculus ⇒
Macromodel for TENSOR OF CONFORMATION

C = ⟨r ⊗ r⟩W :

Equation for C :

C t + (u ·∇)C − (∇u)T · C − C · (∇u) + E(c1)(E · C + C · E ) =

=
−1

λZ(c1)
[F(c1)C − G(c1)I ] ,

◦ Tensor C : CT = C , C = (C ij), differentiable, C > 0.
◦ I -unit tensor.
◦ 2E = ∇u + (∇u)T .
◦ F ,G,Z - dimensionless functions, c1 = TrC .
◦ Finite Extensible Nonlinear Elasticity models = FENE models.



Equation of Polymer Motion

C t + (u ·∇)C − (∇u)T · C − C · (∇u) + E(c1)(E · C + C · E ) =

=
−1

λZ(c1)
[F(c1)C − G(c1)I ] ,

ut + (u ·∇)u +∇ · (τ s + τ p) = 0,

∇ · u = 0,

τ s = 2ηsE ,

τ p =
ηp
λ
[F(c1)C − G(c1)I ]

for FENE models.



Lie Derivatives

In Equations for C :

LvC = C t + (u ·∇) · C − (∇u)T · C − C ·∇u

is Lie derivatives for C

LvC
ij = ∂tC

ij + uk
∂C ij

∂xk
− C kj∂ku

i − C ik∂ku
j , (i , j , k = 1, 2, 3),

C ′ = LvC ,
dx
dt

= v(x), x |t=t0 = X , x = x(t,X )

Lie Equations for vector field v

Canonical parameter: v = ∂t + uk∂k → ∂1
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Main Goal = Dynamics of Tensor C

We have two equations for C :{
LvC = − 1

λZ(c1)
[F(c1)C − G(c1)I ] , (2)

C 3 − c1C 2 + c2C − c3I = 0, (3)

(3) - Hamilton-Cayley equations for Tensor C .

c1 = TrC , c2 = 1
2

[
(TrC )2 − TrC 2] , c3 = detC are invariants

of Tensor C .

(2) + (3) is overdetermined system DE for C . Compatibility
conditions, Reduce to Involutions (Cartan, Pommaret).



SOLUTION for FENE model

Let F(c1) = G(c1) = 1
1−c1/L2 , g(c1) = − F(c1)

λZ(c1)
,

where L is the maximum chain length, c1/L2 < 1. System DE

{
LvC = g(c1)(C − I ), (4)
C 3 − c1C 2 + c2C − c3I = 0,



SOLUTION for FENE model

Lv [(3)=Hamilton-Cayley Eq.] LvC=⇒

3gC 3 − (c ′1 + 3g + 3gc1)C 2 +(c ′2 + 2gc1 + gc2)C − (c ′3 + gc2)I = 0

for Lv I = 0

⇒


c ′1 = g(c1 − 3),
c ′2 = 2g(c2 − c1), (5)
c ′3 = g(3c3 − c2)

g = g(c1) ⇒ c1 = c1(τ), c2 = c2(c1(τ)), c3 = c3(c1(τ))



SOLUTION for FENE-CR model

Z = 1 ⇒ g(c1) =
−1

λ(1 − c1/L2)
(6)

Theorem 1. Invariants of C are solutions of umplicite system of
equations

(3 − L2) ln |c1 − 3|+ c1 = L2

λ (τ − τ0),

c2 = α1(c1 − 3)2 + 2c1 − 3, (7)
c3 = α2(c1 − 3)3 + α1(c1 − 3)2 + c1 − 2,

where τ0, α1, α2 are arbitrary functions of parameters X .



SOLUTION for FENE-CR model

Figure: Graph of the function c1(τ): a) for L2 > 3, b) for L2 < 3.
Different branches are denoted by different colors, curves for different
parameters l and L2 are separated by different hatching.

y1 = c1 − 3 - Lambert function: L2 ln |y1|+ y1 = L2

λ (τ − τ0)



SOLUTION for FENE-CR model

Two singular points of system (5) on the planes: c1 = 3 -singular
point and c1 = L2 - singular manifold.

Let’s investigate the behavior of the solutions ci = ci (τ) of system
(5) near these singularities.

The singular point on the plane c1 = 3 has coordinates
c1 = 3, c2 = 3, c3 = 1. It is a node, repelling for L2 < 3 and
attracting for L2 > 3.



SOLUTION for FENE-CR model

Figure: Behavior of the trajectories of the dynamical system: a) for
L2 < 3, b) for L2 > 3, planes c1 = 3 and c1 = L2. Curves for different
initial data are separated by different hatching.



SOLUTION for Model FENE-CD

Z = 1 − κ + κ
√
c1/3 ⇒ g(c1) =

−1
λ(1−c1/L2)(1−κ+κ

√
c1/3)

(8)

Theorem 2. Invariants of C are solutions of umplicite system of
equations


κ√
3

[
3
2c1

√
c1 + 2(3 − L2)

√
c1 + (3 − L2) ln

∣∣∣√c1−
√

3
√
c1+

√
3

∣∣∣]+
+(1 − κ)

[
c1 + (3 − L2) ln |c1 − 3|

]
= L2

λ (τ − τ0),

c2 = α1(c1 − 3)2 + 2c1 − 3, (9)
c3 = α2(c1 − 3)3 + α1(c1 − 3)2 + c1 − 2

Identical formulas for cα = cα(c1), α = 2, 3 for FENE-CR and
FENE-CD.



STRUCTURE DYNAMICS OF INVARIANTS ci

Change C → Y = C − I (ci > 0, i = 1, 2, 3)
y1 = c1 − 3,
y2 = c2 − 2c1 + 3, (10)
y3 = c3 − c2 + c1 − 1.

Dynamical system for invariants yi :

y1 = y1(τ),

Σ :

{
y2 = α1(y1)

2, (11)
y3 = α2(y1)

3.



STRUCTURE DYNAMICS OF INVARIANTS ci
Curve Σ in space R3(y) has curvature k and torsion κ:

k = 2
[
9α2

2y
4
1 + α2

1(1 + 9α2
2y

4
1 )

(1 + 4α2
1y

2
1 + 9α2

2y
4
1 )

3

]1/2

, κ =
3α1α2

α2
1 + 9α2

2y
2
1 + 9α2

1α
2
2y

4
1

Figure: y2
3 = y3

2 - Neil parabola



Embolizates – Advanced Polymers for Minimally
Invasive Treatment of Vascular Pathologies.
Experiment.
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CONCLUSION

In this work, the equations for the dynamics of the invariants of the
conformational tensor for FENE polymer solution models are
derived and integrated.
Explicit formulas for the invariants as functions of the time
parameter along the trajectory of fluid particles are obtained.
The invariants are represented as functions of the Lambert function.
A description of the qualitative behavior of the invariants under
different regimes is given.
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