Моделирование образования тромба в кавернах и углублениях

Бутаков И. Д., Терехов К. М., Василевский Ю. В.

butakov.id@phystech.edu

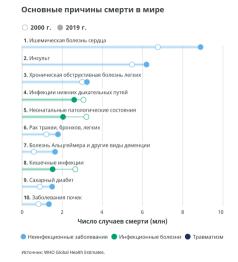
Институт вычислительной математики имени Г.И.Марчука РАН

17.10.2025

Содержание

Актуальность

Тромбоцитарный тромб


Модель агрегации тромбоцитов

Валидация на экспериментальных данных

Заключение

Актуальность

- Значительная доля всех смертей вызвана тромбами (инсульт — второе место в мире).
- Вредно давать большие дозы лекарств, но рисковать нельзя.

Актуальность

- Значительная доля всех смертей вызвана тромбами (инсульт — второе место в мире).
- Вредно давать большие дозы лекарств, но рисковать нельзя.

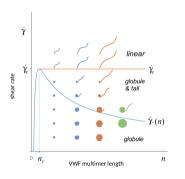
Требуется уметь

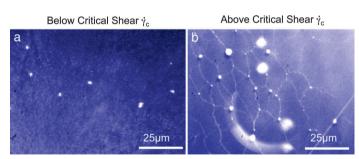
- выявлять людей в группе риска;
- рассчитывать минимально эффективную дозу лекарств.

Основные причины смерти в мире 1. Ишемическая болезнь сердца Инсульт 3. Хроническая обструктивная болезнь легких 4. Инфекции нижних лыхательных путей Рак трахеи, бронхов, легких 7. Болезнь Альшгеймера и другие виды деменции 8. Кишечные инфекции 9. Сахарный диабет 10. Заболевания почек Число случаев смерти (млн)

Неинфекционные заболевания
 Инфекционные болезни
 Травматизм

McTourus WHO Global Health Estimator


Тромбоцитарный тромб


Тромбоцитарный (белый) тромб — сгусток слипшихся тромбоцитов, обычно образуется в быстром течении крови.

В местах с изменёнными характеристиками потока крови (патологии сосудов, места сочленения имплантов, подвижные части имплантов и т.д.) вероятность образования белого тромба выше.

Тромбоцитарный тромб

При повышении сдвигового напряжения происходит разворачивание фактора фон Виллебранда (vWF). В развёрнутом виде оголяется участок A1, способный связываться с рецептором GPIb у тромбоцитов.

За основу модели взяты уравнения Навье-Стокса с законом Дарси (для учёта пористой структуры тромба).

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + \operatorname{div} \left(\mathbf{u} \mathbf{u}^T - \boldsymbol{\tau}(\mathbf{u}) + p \mathbf{I} \right) + \frac{\nu}{K} \mathbf{u} = \mathbf{0} \\ \operatorname{div} \left(\mathbf{u} \right) = 0 \\ \boldsymbol{\alpha} \mathbf{u} + \boldsymbol{\beta} \left(\boldsymbol{\tau}(\mathbf{u}) - p \mathbf{I} \right) \mathbf{n} = \mathbf{r} \end{cases} \quad \text{Ha} \quad \partial \Omega,$$

$$\boldsymbol{\tau}(\mathbf{u}) = 2\nu \mathbf{D}(\mathbf{u}), \quad \mathbf{D}(\mathbf{u}) = \frac{1}{2} \left(\mathbf{u} \nabla^T + \nabla \mathbf{u}^T \right).$$

Проницаемость моделируется уравнением Козени-Кармана.

Размер (d_p) и сферичность (Ψ_p) тромбоцитов берутся из данных для человека в случае неактивированного состояния. Максимальная плотность упаковки (ϕ_{max}) берётся из задачи о плотной упаковке сфер.

$$K = \frac{\Psi_p^2 \cdot d_p^2 \cdot (\phi_{\text{max}} - \phi_d)^3}{150 \cdot \phi_d^3}, \label{eq:Kappa}$$

Компартменты: две пассивные примеси (ϕ_f , ϕ_a — свободные и «липкие» тромбоциты), одна статичная примесь (ϕ_d — осевшие тромбоциты).

$$\begin{cases} \frac{\partial \phi_f}{\partial t} + \operatorname{div}(\mathbf{u}\phi_f - D\nabla\phi_f) &= k_{a\to f} \cdot \phi_a - k_{f\to a} \cdot \phi_f \\ \frac{\partial \phi_a}{\partial t} + \operatorname{div}(\mathbf{u}\phi_a - D\nabla\phi_a) &= k_{f\to a} \cdot \phi_f - (k_{a\to f} + k_{a\to d}) \cdot \phi_a \\ \frac{\partial \phi_d}{\partial t} &= k_{a\to d} \cdot \phi_a - k_{d\to a} \cdot \phi_d \end{cases}$$

Параметры $k_{*\to *}$ находятся по результатам in-vitro экспериментов.

Для начала рассмотрим случай постоянной во времени ϕ_a . Тогда систему реакций можно решить аналитически:

$$\frac{\partial \phi_d}{\partial t} = k_{a \to d} \cdot \phi_a - k_{d \to a} \cdot \phi_d \quad \Longrightarrow \quad \phi_d(t) = \phi_a \frac{k_{a \to d}}{k_{d \to a}} - e^{-k_{d \to a} \cdot t} \left(\phi_a \frac{k_{a \to d}}{k_{d \to a}} - \phi_d(0) \right)$$

Далее можно совершить подгонку аналитического решения под экспериментальные данные.

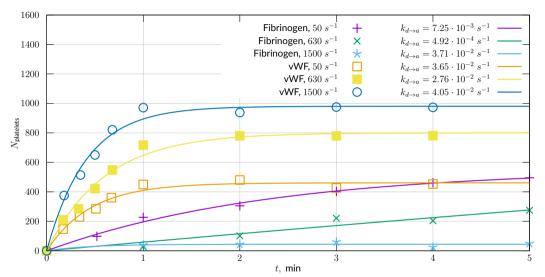


Рис. 1: Число осевших тромбоцитов в зависимости от времени, сдвигового напряжения и связывающего фактора.

Получилось, что скорость дизагрегации тромбоцитов не зависит от сдвигового напряжения и равна $3.3 \cdot 10^{-2} \text{ c}^{-1}$. В силу симметрии $k_{a \to f} = k_{d \to a}$.

Сдвиговая скорость не влияет на интенсивность дизагрегации \Longrightarrow можно получить зависимость интенсивности агрегации от сдвиговой скорости по данным о предельной концентрации осаждённых тромбоцитов.

$$k_{f\to a}, k_{a\to d} \sim 1 - a e^{-b\dot{\gamma}}, \qquad a = 0.76, b = 2.85 \cdot 10^{-3} \text{ c},$$

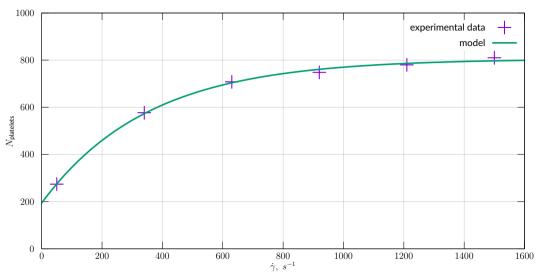
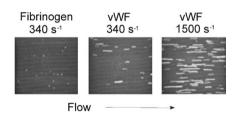
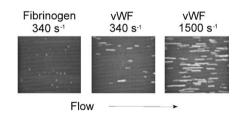


Рис. 2: Предельное число осевших тромбоцитов как функция сдвиговой скорости.


Тромб растёт послойно. В конечно-объёмной аппроксимации:

$$k_{a \to d} \sim (\alpha_c \cdot S_d + \alpha_b \cdot S_b)/V_{\text{cell}},$$

где S_d — площадь контакта ячейки cell с растущим тромбом, S_d — площадь контакта со стенкой сосуда, и $V_{\rm cell}$ — объём ячейки; α_* — скорость налипания на соответствующую поверхность.


Оставшиеся параметры (4 шт.) находятся подгонкой под эксперименты.

Проблема: фактически наблюдается «перекатывание» налипших тромбоцитов. Также при определённых условиях наблюдается срыв.

Проблема: фактически наблюдается «перекатывание» налипших тромбоцитов. Также при определённых условиях наблюдается срыв.

Решение: добавить срыв, пропорциональный сдвиговому напряжению (аналогично некоторым другим моделям).

Итоговые реакционные соотношения:

$$\begin{split} k_{\text{agg}} &= 1 - a\,e^{-b\dot{\gamma}}, \qquad a = 0.76, \quad b = 2.85\cdot 10^{-3} \text{ [s]} \\ k_{f\rightarrow a} &= k_{\text{agg}}\cdot k_1 \\ k_{a\rightarrow d} &= k_{\text{agg}}\cdot (\alpha_c\cdot S_c + \alpha_b\cdot S_b)/|\omega| \\ k_{\text{disagg}} &= 3.3\cdot 10^{-2} \text{ [s}^{-1]} \\ k_{d\rightarrow a} &= k_{\text{disagg}}\cdot (\dot{\gamma}/\dot{\gamma}_0) \\ k_{a\rightarrow f} &= k_{\text{disagg}}, \end{split}$$

Трубка со ступенькой

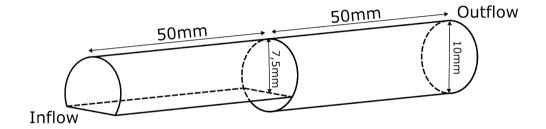


Рис. 3: Расчётная область в задаче со ступенькой.

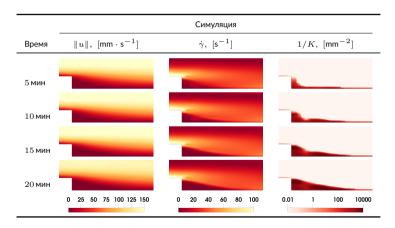

Трубка со ступенькой

Таблица 1: Экспериментальные данные и результат моделирования в задаче образования тромба в ступеньке.

Трубка со ступенькой

Таблица 2: Результат моделирования в задаче образования тромба в ступеньке (дополнительные данные).

Каверна

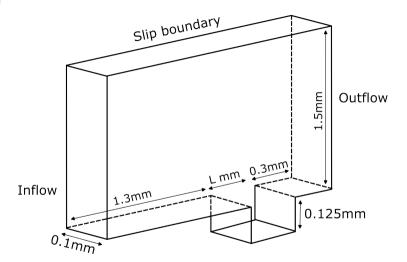


Рис. 4: Расчётная область в задаче с каверной.

Таблица 3: Образования тромба в каверне.

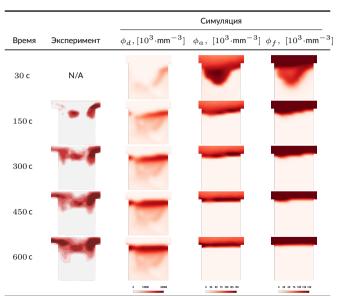
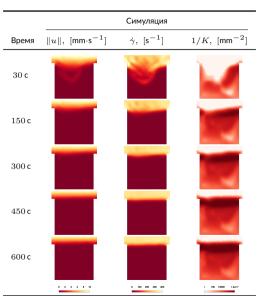



Таблица 4: Образования тромба в каверне (дополнительные данные).

Каверна

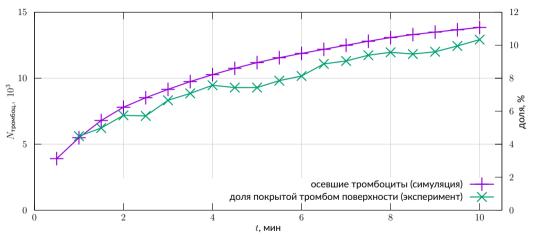


Рис. 5: Сравнение доли покрытой тромбом площади стенок каверны (эксперимент) и числа осевших тромбоцитов (симуляция).

В экспериментах на прошлых слайдах каверна предполагалась двумерной. Также не были учтены разные материалы разных стенок.

В исходных экспериментах были рассмотрены три ширины каверны, два значения сдвиговой скорости и три материала одной из стенок.

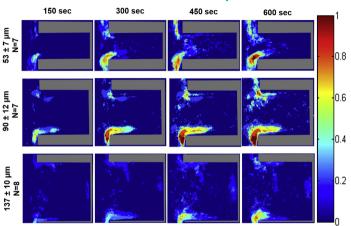


Рис. 6: Вероятность прилипания тромбоцита к стенке; $\dot{\gamma}=400~{\rm c}^{-1}$, разная ширина.

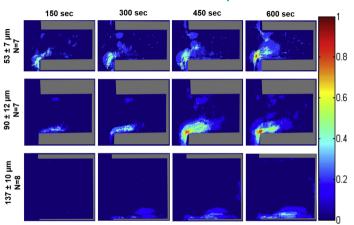


Рис. 7: Вероятность прилипания тромбоцита к стенке; $\dot{\gamma}=1000~{\rm c}^{-1}$, разная ширина.

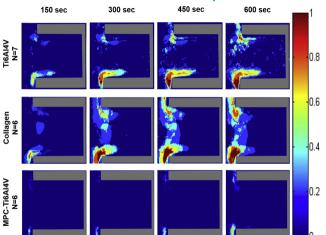


Рис. 8: Вероятность прилипания тромбоцита к стенке; $\dot{\gamma}=400~{\rm c}^{-1}$, разный материал, ширина — $90~{\rm mkm}$.

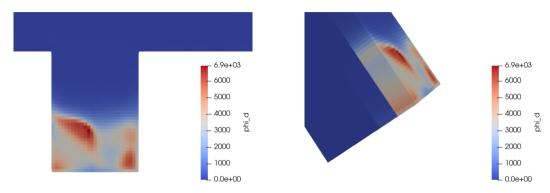


Рис. 9: Результат текущей модели на одном из тестов с трёхмерной каверной.

Заключение

Результаты:

- Предложена простая модель образования тромбоцитарного тромба.
- Параметры модели идентифицированы по результатам трёх экспериментов.

Проблемы:

- Плотность тромба сильно варьируется.
- Есть артефакты в итоговом распределении тромбоцитов.
- Трудности с воспроизведением в трёхмерном случае.