Стетоскоп 3.0 Трансформеры, VLM и Latent-Diffusion

Мультимодальный конвейер машинного обучения для быстрого скрининга бронхиальной астмы по дыхательным шумам

Докладчик: Аптекарев Ф. А., соискатель степени PhD, НИУ ВШЭ, Нижний Новгород

Авторы:

- Аптекарев Федор (НИУ ВШЭ),
- Соколовский Владимир (Ben-Gurion University),
- Фурман Евгений (ПГМУ им. ак. Е.А. Вагнера),
- Калинина Наталья (Пермская Краевая Клиническая Больница),
- Фурман Григорий (Ben-Gurion University)

Проблема и мотивация

Цель и задачи

Ключевые проблемы

- 250–350 млн пациентов с БА¹
- Нет "золотого стандарта" диагностики; до 30% неверных диагнозов²
- Ограничения спирометрии/аускультации: субъективность, трудности у детей
- Дефицит доступа к специалистам и оборудованию

Мотивация: объективировать и стандартизовать первичный скрининг

Цель

Разработать и экспериментально обосновать MLконвейер для скрининга/поддержки диагностики бронхиальной астмы по респираторным шумам

Задачи

- Сформировать корпус дыхательных шумов
- Построить конвейер признаков (мел-спектрограммы)
- Выбрать и обучить модели
- Разработать схему синтетической аугментации
- Обеспечить интерпретируемость
- Разработать модель интеграции в систему здравоохраниения

- 1. Global Initiative for Asthma, 2018; GBD 2019 Diseases and Injuries Collaborators, 2020
- 2. "Deep learning facilitates the diagnosis of adult asthma"; Tomita et al., 2019

Эволюция методов анализа респираторных шумов (2015-2025)

До 2017

- Классические методы цифровой обработки сигналов
- Традиционный ML (SVM, GMM, HMM с ручными признаками)
- Первые эксперименты с DL

2017-2020 (до COVID19)

- Расширение экспериментов с DL
- Использование CNN, RNN
- Публикация ІСВНІ датасета

2020-2025

- Современный DL
- Больше open access датасетов
- Dense CNNs, Трансформеры, VLM, и т.д.

Год	Автор	Название	Что примечательного
2016	Chamberlain et al.	Application of semi-supervised deep learning to lung sound analysis	AUC 0,86/0,74 с неразмеченными данными
2017	Pramono et al.	Automatic adventitious respiratory sound analysis: A systematic review	Систематический обзор
2017	Aykanat et al.	Classification of lung sounds using convolutional neural networks	86% ассигасу, сопоставимо с SVM
2017	Rocha et al.	An open access database for the evaluation of respiratory sound classification algorithms	Open access ICBHI 2017 датасет
2019	Chen et al.	Triple-Classification of Respiratory Sounds Using Optimized S-Transform and Deep Residual Networks	~98% accuracy
2019	Tomita et al.	Deep learning facilitates the diagnosis of adult asthma	~98% accuracy, AUC ~0,99
2021	Kim et al.	Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning	~86,5% ассuracy + проверили в клинических условиях
2021	Hsu et al	Benchmarking of eight recurrent neural network variants for breath phase and adventitious sound detection on a self-developed open-access lung sound database – HF_Lung_V1	Open access HF_Lung_V1 датасет
2023	Aptekarev et al.	Application of deep learning for bronchial asthma diagnostics using respiratory sound recordings	~87% accuracy, 93% precision

Датасет

Собирался на базе ПГМУ им. ак. Е.А. Вагнера и Пермской Краевой Клинической Больнице в 2014-2020 гг.

Точка записи	Астма	3доровый	Больной (не астма)
Трахея	563	123	101
Второе межреберье	285	9	10
Грудная клетка сзади	256	0	12
Ротовая полость	9	1	2
NA	0	0	242
Total	1113	133	367

Возрастная группа	Астма	3доровый	Больной(не астма)
0-2	14	6	1
2-4	8	0	39
4-13	515	32	221
13-20	516	13	106
20	60	82	0
Total	1113	133	367

Всего обследуемых: 1613

Пациенты с подтвержденным диагнозом: 1480

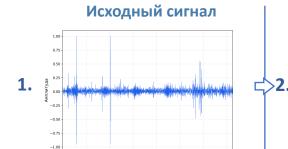
Пациенты с астмой: 1113

Единица анализа: 5-сек фрагменты

Предобработка: фильтрация/нормализация

Диагноз	F	M	Всего
Астма (неполная ремиссия)	113	307	420
Астма (обострение)	53	131	184
Астма (ремиссия)	77	166	243
Астма (другое)	70	196	266
3доров	52	81	133
БЛД	1	0	1
Муковисцидоз	153	90	243
хнзл	0	1	1
Пневмония	10	0	10
РОБЛ	13	84	97
Аплазия легкого	0	15	15
Total	542	1071	1613

Предварительная обработка



Фильтрация коротких записей

Устанавливаем порог по хронометражу

$$CHRONO_THRESHOLD = 14c$$

Считаем хронометраж по частоте дискретизации

$$duration = \frac{len(waveform)}{sample_rate}$$

Всё что меньше - бракуем

$$technical_defect = egin{cases} True, & ext{ecnu } duration < 14 \ False, & ext{в противном случаe} \end{cases}$$

Фильтрация клипинг артефактов

Считаем 95й перцентиль абсолютных значений амплитуд

$$Threshold = P_{95}(\mid waveform \mid)$$

Считаем процент сэмплов попадающих в 95й перцентиль

$$\text{Clipping\%} = \frac{N_{\text{samples}} \geq \text{Threshold}}{N_{\text{total}}} \cdot 100$$

Бракуем если процент сэплов попадающих в 95й перцентиль больше чем

$$QUALITY_THRESHOLD = 2$$

Обрезка сигнала

Определяем сколько будем обрезать с начала и конца

$$t_{trim}=2c$$

Считаем сколько семплов отрезать по частоте дискретизации

$$N_{trim} = t_{trim} \cdot f_s$$

Обрезаем нужное кол-во семплов с начала и конца $ext{waveform}[N_{trim}: (ext{len}(ext{waveform}) - N_{trim})]$

Сегментация сигнала

Определяем перекрытие и шаг смещения между клипами

$$L = T \cdot f_s ~~ S = L \cdot \left(1 - rac{lpha}{100}
ight)$$

Рассчитываем число целых клипов которые можно получит

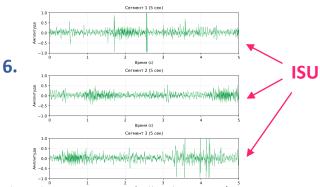
$$C = \left\lfloor rac{L_{total} - L}{S}
ight
floor + 1$$

Итерационно вырезаем нужное число целых клипов из середины

$$T_{span} = (C-1) \cdot S + L$$

$$T_{lower} = \left \lfloor rac{L_{total} - T_{span}}{2}
ight
floor, \quad T_{upper} = T_{lower} + T_{span}$$

Нормализация клипов

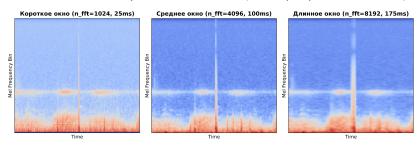


Aptekarev T, Sokolovsky V, Furman E, Kalinina N, Furman G. Application of deep learning for bronchial asthma diagnostics using respiratory sound recordings. PeerJ Comput Sdi:"2023 doi: 10.7717/peerj-cs.1173

Модели и обучение

Диагностические модели

- DenseNet201: CNN используемая как baseline
- **AST**: Основная модель, инициализированная ViT.
- **Moondream**: Мультимодальная (спектрограмма + текст)



Извлечение спектральных признаков

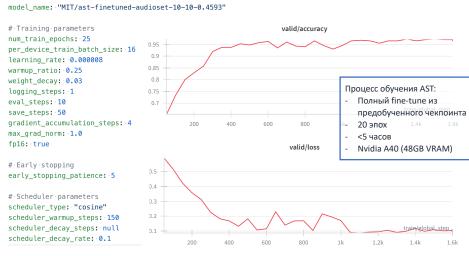
3 STFT OKHA:

- короткое (25 мс)
- среднее (100 мс)
- длинное (175 мс)

Мел-фильтры: Частотная ось преобразуется в нелинейную мел-шкалу (128 мел-коэффициентов, полоса 0-8 кГц)

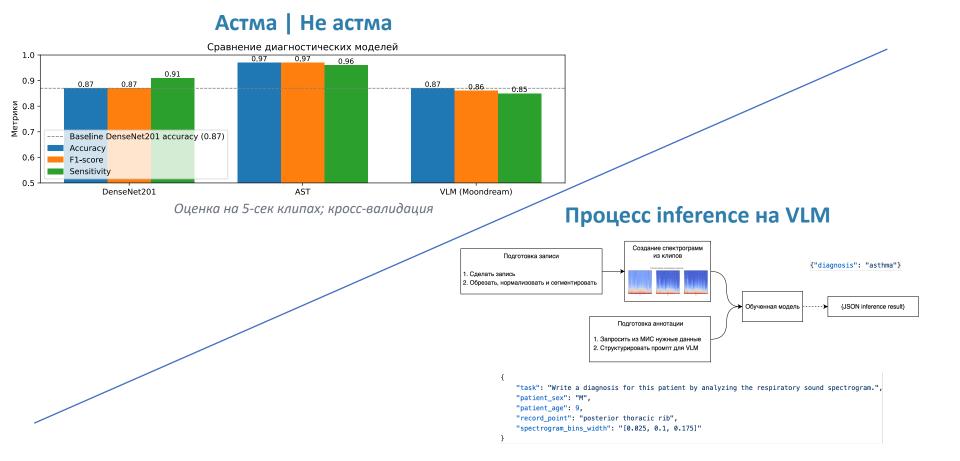
Обучение и валидация

- Базовая классификация: "Астма | Не астма"
- Бутылочное горлышко при создании обучающего корпуса: записи здоровых
- Мониторинг validation loss/accuracy
- Ранняя остановка при отсутствии улучшений
- Метрики: Accuracy, Sensitivity, Youden Index



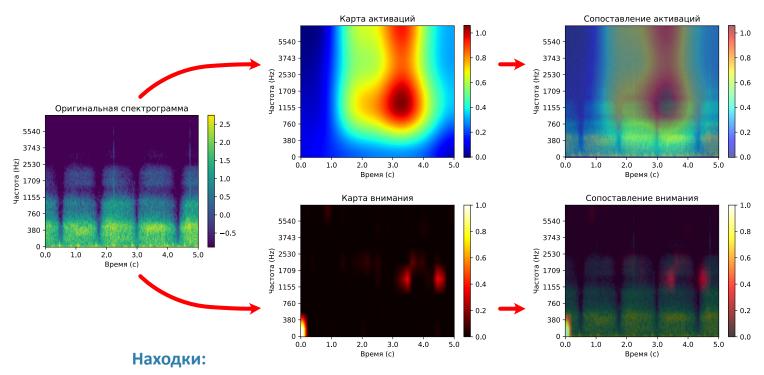
- "Densely Connected Convolutional Network" (Huang et al, 2017, https://doi.org/10.48550/arXiv.1608.06993)
- "AST: Audio Spectrogram Transformer (Gong et al, 2021 https://doi.org/10.48550/arXiv.2104.01778)
- <https://github.com/vikhyat/moondream>

Результаты бинарной классификации



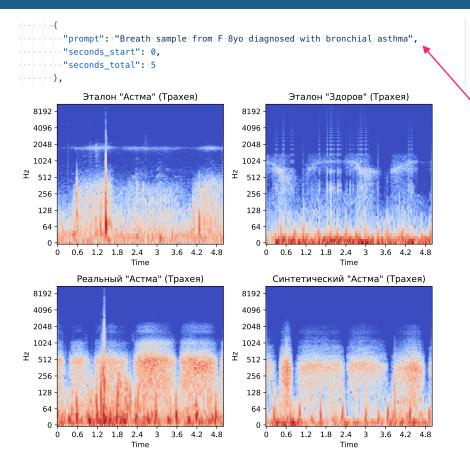
На что смотрит модель?

Интерпретируемость: необходимое условие клинического внедрения



- Совпадение фокусов на удлиненном выдохе и характерных зонах
- Подтверждение представлений о клинических проявлениях патологии

Синтетическая аугментация



Вопрос: как валидировать синтетикиу?

Точность диагностического классификатора: ≈95.2%

Идея: ИИ проверяет ИИ

Цель: борьба с дисбалансом и дефицитом данных

Процесс генерации

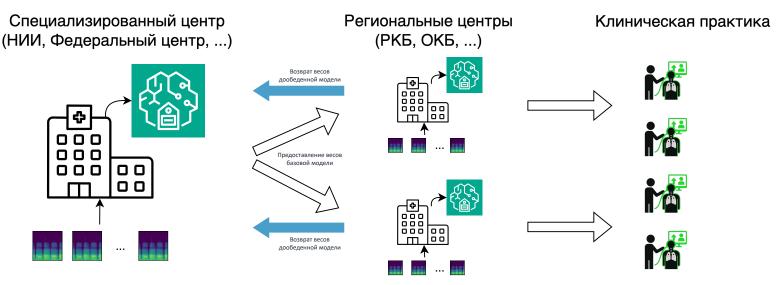
Parameter	Pretraining	Asthma FT	Healthy FT
Steps	250	200	200
CFG scale	[3,6,9]	6.5	5.5
Temperature	1	0.9	0.95
Top-k	100	50	100

Stable Audio Open, Evans et al., 2024 < https://doi.org/10.48550/arXiv.2407.14358>

Интеграция в систему здравоохранения

Федеративная схема

Центральная модель (НИИ) \rightarrow распределение в клиники \rightarrow локальное дообучение \rightarrow агрегация весов (FedAvg) \rightarrow обновленная базовая модель



Преимущества подхода

- Конфиденциальность: данные не покидают учреждение
- Переносимость: локальная адаптация под популяцию/оборудование
- Обновляемость: периодическая синхронизация

Ограничения, выводы и следующие шаги

Ограничения

- Нужна экспертная валидация синтетики и клиническая верификация
- Расширение за пределы бинарной задачи (XOБЛ, муковисцидоз)
- Стандартизация отчета для врача

Выводы

- ML-конвейер демонстрирует высокую точность (AST ≈97%) и объяснимость
- Синтетика помогает с дефицитом данных (≈95.2%)
- Федеративная схема обеспечивает приватность и адаптацию

Благодарю за внимание! Вопросы приветствуются.

aptekarev@gmail.com

Ссылка на репозитория с демонстрацией и весам