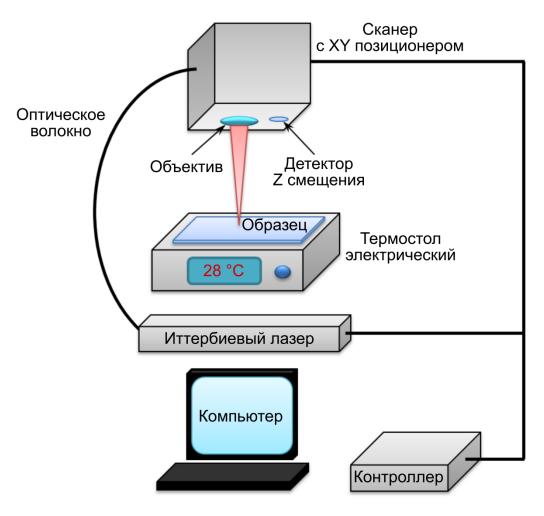
XVII конференции «Математические модели и численные методы в биологии и медицине» 16 октября - 17 октября 2025 г.

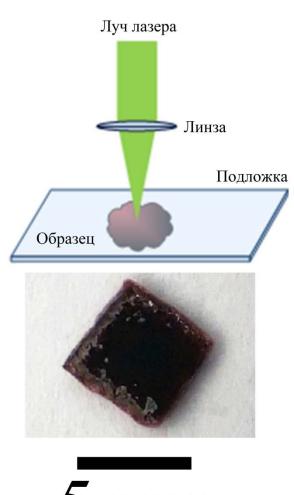
А.Ю Герасименко, М.С. Савельев

Механизмы формирования биосовместимых материалов с помощью лазерного излучения

Национальный исследовательский университет «МИЭТ»

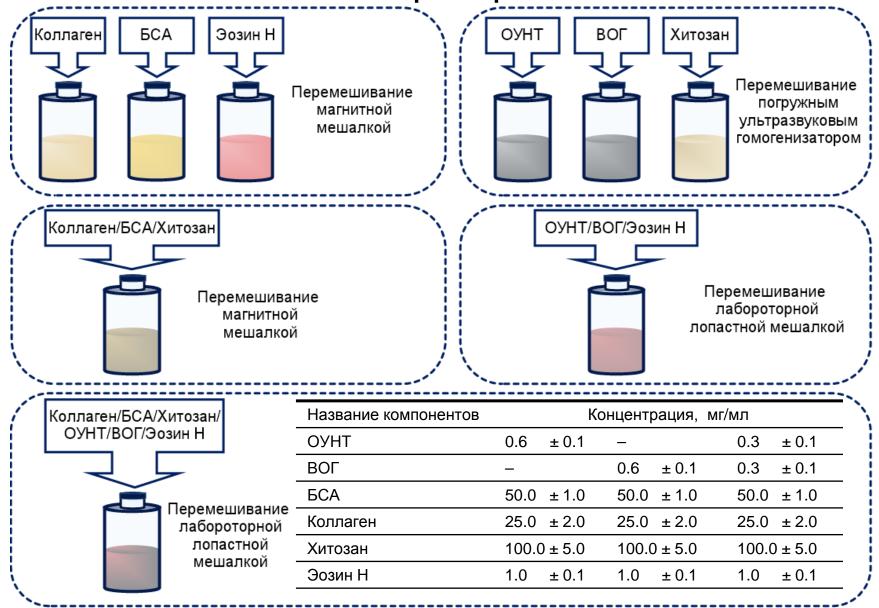
ФГАОУ ВО Первый МГМУ им. И. М. Сеченова Минздрава России (Сеченовский Университет) «ПМГМУ»




Финансирование: Работа выполнена в рамках государственного задания Минобрнауки России (Проект FSMR-2024-0003).

Москва 2025

Изготовление композита методом фотолитографии


Лазерная система для приготовления композитов методом фотолитографии из фоторезиста с использованием низкоэнергетического ИК-излучения (1070 нм) наносекундной длительности

 $\overline{5}$ MM

Схема эксперимента

Состав фоторезиста

ОУНТ – Одностенный углеродные нанотрубки

ВОГ – Восстановленный оксид графена

БСА – Бычий сывороточный альбумин

Методика измерения оптических свойств фоторезиста

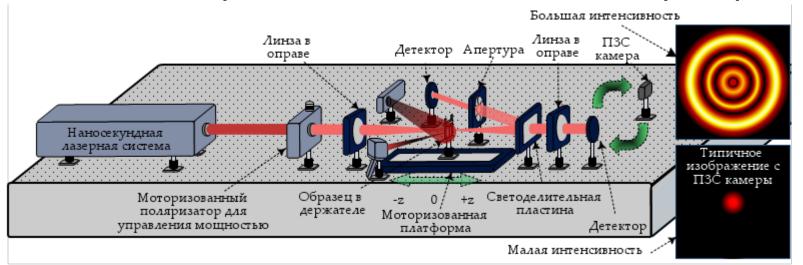
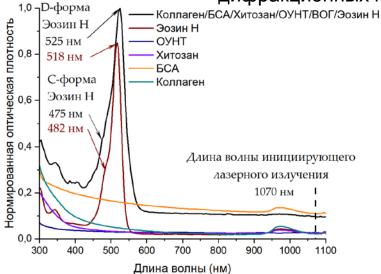
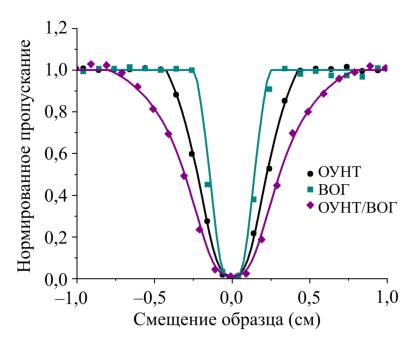
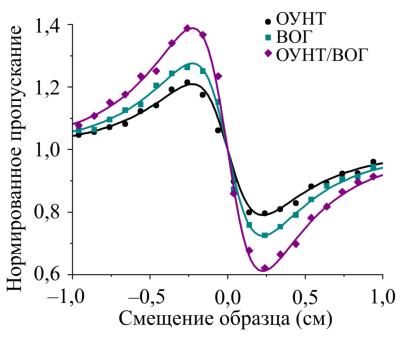



Схема установки для проведения исследований методом Z-сканирования, регистрации картины дифракционных колец и контроля температуры


Спектры компонентов фоторезиста

ОУНТ – Одностенный углеродные нанотрубки ВОГ – Восстановленный оксид графена БСА – Бычий сывороточный альбумин


Основные параметры установки

- 1. Мощность лазерного излучения 200 мВт.
- 2. Радиус луча лазера 20 мкм.
- 3. Длина волны 1070 нм.
- 4. Частота повторения импульсов 15 кГц.
- 5. Фокусное расстояние линзы 5 см.

Z-скан

Результаты измерений методом Zсканирования с открытой апертурой

Результаты измерений методом Zсканирования с закрытой апертурой

Математический аппарат для расчета параметров нелинейного оптического материала

Из уравнения переноса излучения (УПИ) для нелинейного взаимодействия можно определить интенсивность как функцию координаты $\ll l$ » вдоль направления распространения луча в образце. Таким образом, мы можем записать:

$$\int_{I_0(x,y,z,t,0)}^{I(x,y,z,t,d)} \frac{1}{I\mu(I)} dI = -\int_0^d dl.$$
 (1)

В пороговой модели, коэффициент поглощения $\mu(I)$ представляется как:

$$\mu(I) = \begin{cases} \alpha, & I < I_x, \\ \alpha + \beta(I - I_x), & I > I_x. \end{cases}$$
 (2)

Используя решение (1) после подстановки (2) получим прошедшую интенсивность I.

В случае пороговой модели коэффициент поглощения от интенсивности задаётся формулой (2), где $I_{\rm x}$ — пороговая интенсивность, α — коэффициент линейного поглощения, β — нелинейный коэффициент поглощения.

Полная энергия одиночного импульса U определяется как:

$$U(\rho, \varphi, t) = \int_{-\infty}^{+\infty} \left(\int_{0}^{2\pi} \int_{0}^{\infty} I(\rho, \varphi, t) \rho d\rho d\varphi \right) dt, \quad (3)$$

где ρ и ϕ - полярная система координат, t - время.

Нормированное пропускание в пороговой модели (2) через полную энергию импульса (4) можно записать в простом виде для формы импульса прямоугольной формы в сечении как:

$$T = \exp\left[\left(\frac{\beta}{\tau}\left(F_x - \frac{U_0}{\pi w_0^2}w_y\right) - \alpha\right)d\right], \quad (4)$$

где τ и w_0 характеристики лазерного луча, а именно длительность и радиус, соответственно. В (5) значение нормированного радиуса:

$$w_{y} = \sqrt{1 + \frac{z^{2}}{z_{0}^{2}}}.$$
 (5)

где z_0 длина Рэлея, а z смещение образца относительно фокуса линзы.

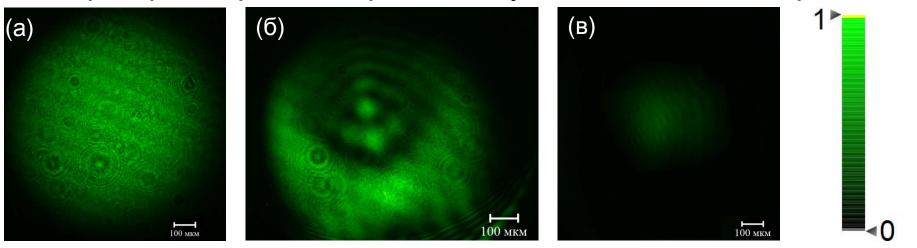
Результаты исследований нелинейно-оптических свойств

Таблица – Оптические параметры фоторезиста

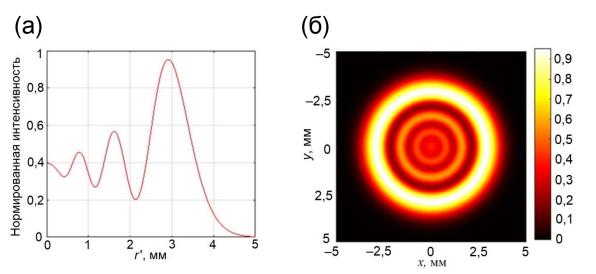
Фоторезист	Концентрация ОУНТ, мг/мл	Концентрация ВОГ, мг/мл	Линейный коэффициент поглощения, α, см-1	Нелинейный коэффициент поглощения, σ , ГМ	Пороговая экспозиция лазерного излучения, F_{x} , Дж/см ²	преломления,	Нелинейный коэффициент преломления, $n_{\rm n}$, cm²/TBт
1	0,6	_	35	530	0,15	1,3619	15
2	_	0,6	25	430	0,25	1,3642	15
3	0,3	0,3	31	640	0,05	1,3628	25

Сечение двух-фотонного поглощения определялось по формуле:

$$\sigma = \frac{\beta h\omega}{N_{\Delta} C \cdot 10^{-3}} \cdot 10^{50} (\Gamma M). \tag{1}$$


где β – нелинейный коэффициент поглощения (см/Вт); $N_{\rm A}$ – число Авогадро (моль⁻¹); C – концентрация моль деленное на литр (моль/л); \hbar – константа Дирака (Дж·с); ω – циклическая частота (Гц);

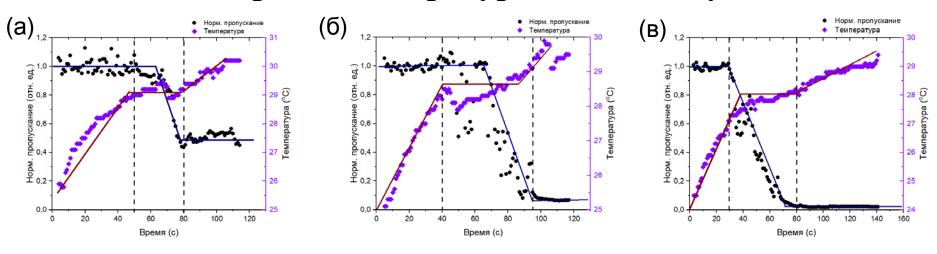
Нелинейный показатель преломления определен в соответствии с формулой:


$$T = 1 - \frac{8\pi n_{\rm n} I_0 \left(1 - \exp(-\alpha d)\right) x}{\lambda \alpha \left(x^2 + 9\right) \left(x^2 + 1\right)}.$$
 (2)

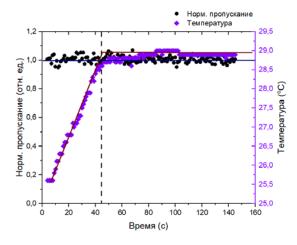
где $x=z/z_0$ — нормированная координата; α — линейный коэффициент поглощения; d — оптическая толщина образца; I_0 — максимальная интенсивность в фокусе; λ — длина волны; $n_{\rm n}$ — нелинейный показатель преломления.

Подбор параметров лазерного излучения для полимеризации

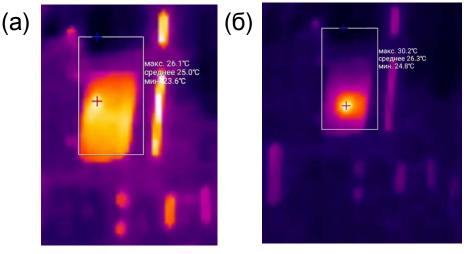
Профиль пучка при облучении образца лазерными импульсами: наносекундная длительность (а) вдали от фокуса, (б) в фокусе и (в) со сформированным композитом


Пространственные профили пучка после взаимодействия с образцом: радиальные (а) и двумерные (б) паттерны для излучения с наносекундной длительностью импульса при отсутствии тепловой конвекции

Число проходов лазерного луча для стабильной полимеризации определяется по формуле:

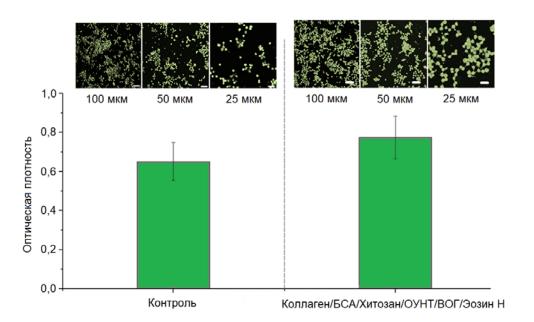

$$N = \frac{9 \cdot t}{I}.$$
 (1)

где ϑ – скорость перемещения лазерного пятна; t – время от начала лазерного облучения до исчезновения картины дифракционного кольца; L – длина линии.


Контроль температуры в зоне облучения

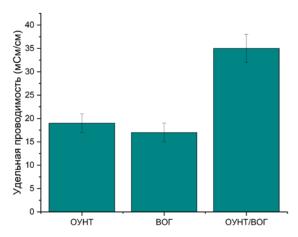
Зависимости нормированного пропускания и температуры от времени лазерного воздействия при расположении образцов фоторезиста в фокусе линзы: (а) ВОГ, (б) ОУНТ и ВОГ, (в) ОУНТ

Зависимости нормированного пропускания и температуры от времени лазерного воздействия при расположении фоторезиста с ВОГ вне фокусе линзы со смещением 2 мм



Типичные изображения полученные тепловизором: (a) в начальный момент времени и (б) после формирования образца

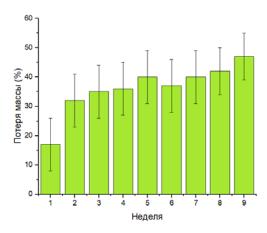
Удельная проводимость биокомпозитов


Таблица. Электропроводность образцов

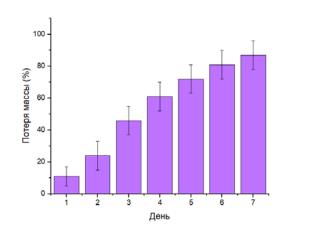
Биокомпозиты, №	Концентрация ОУНТ, мг/мл	Концентрация ВОГ, мг/мл	Удельная проводимость, мСм×см ⁻¹
1	0,6	_	19
2	_	0,6	17
3	0,3	0,3	35

Изображение клеток после трех дней наблюдения

ОУНТ – Одностенный углеродные нанотрубки ВОГ – Восстановленный оксид графена



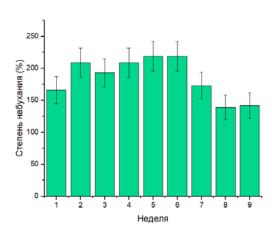
Удельная электропроводность биокомпозита



Внешний вид биокомпозитов

Оценка деградации материала

Потери массы за девять недель (Коллаген/БСА/Хитозан/ОУНТ/ВОГ/Эозин H)


Липаза 25,000 PhEur

Амилаза 18,000 PhEur

Протеаза 1,000 PhEur

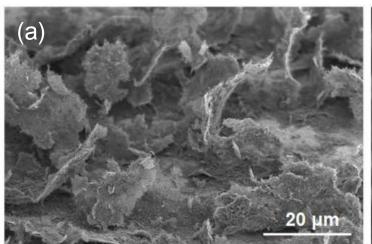
Потери массы за семь дней с ферментативной деградацией (Коллаген/БСА/Хитозан/ОУНТ/ВОГ/Эозин Н)

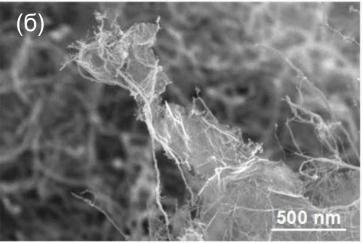
ОУНТ – Одностенный углеродные нанотрубки ВОГ – Восстановленный оксид графена

Степень повторного набухания относительно первоначальной (Коллаген/БСА/Хитозан/ОУНТ/ВОГ/Эозин Н)

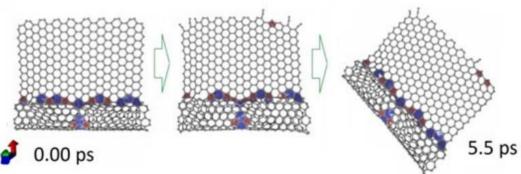
Оценка потери массы

$$M_t = \frac{m_0 - m_t}{m_0} \times 100\%$$
 , (1)


где $M_{\rm t}$ – потеря массы после t дней деградации, $m_{\rm 0}$ – начальное значение массы сухого образца до деградации, $m_{\rm t}$ – масса после t дней.


Оценка степени набухания

$$S_t = \frac{m_{Wt} - m_t}{m_0} \times 100\% , \qquad (2)$$


где S_t — степень повторного набухания после t дней деградации, m_{wt} — значение массы влажного набухшего образца после t дней.

Негексагональные углеродные элементы

СЭМ-изображения слоистых структур на основе гибридов ОУНТ/ВОГ после лазерного воздействия с экспозицией 0,5 Дж/см²: (а) масштабная линейка 20 мкм и (б) масштабная линейка 500 нм

Реакция гибрида на основе ВОГ пластинки, связанной с ОУНТ, на внешнее электрическое поле с течением времени (от 0 до 5,5 пс)

ОУНТ – Одностенный углеродные нанотрубки ВОГ – Восстановленный оксид графена

на основе ВОГ чешуек, связанных с ОУНТ, после лазерного воздействия

Результаты и выводы

Сочетание однослойных углеродных нанотрубок (ОУНТ) и восстановленного оксида графена (ВОГ) в фоторезисте минимизирует количество углеродных частиц при разработке нейроимплантатов, предназначенных для восстановления поврежденных нейронных сетей или модуляции передачи боли, причем ключевыми требованиями являются как биосовместимость, так и электропроводность.

Фотолитографию композита проводили с помощью иттербиевого лазера на длине волны 1070 нм с длительностью импульсов 120 нс, частотой повторения 15 к Γ ц и мощностью ~200 мВт. В качестве фоторезиста использовали ОУНТ 0,6 мг/мл, ВОГ 0,6 мг/мл и ОУНТ (0,3 мг/мл)/ВОГ (0,3 мг/мл).

Удельная проводимость: 17 мСм/см (ВОГ), 19 мСм/см (ОУНТ) и 35 мСм/см (ОУНТ/ВОГ).

Потеря массы образца ОУНТ/ВОГ составила 40%, набухание увеличилось на 20%, оптическая плотность МТТ-теста составила 0,76 (контрольное покровное стекло 0,62).

Ферменты разложили образец за неделю.

Моделирование и СЭМ подтверждают лазерно-индуцированную перестройку ОУНТ с ВОГ в отдельные наноструктуры с образованием негексагональных углеродных элементов.

Фазовый переход наблюдается при температуре 27–29 °C.

В процессе формирования композита отмечается резкое снижение оптической плотности в пять раз.

Полученный материал обладает удельной проводимостью 35 мСм/см, а включение биополимеров обеспечивает высокую биосовместимость, что подтверждается пролиферацией клеток, превысившей контрольный образец на покровном стекле.

Работа выполнена в рамках государственного задания Минобрнауки России (Проект FSMR-2024-0003).

Спасибо за внимание!