Вычислительная технология для расчёта диастолического состояния аортального клапана

Легкий $A.A.^1$, Саламатова $B.Ю.^2$

¹ИВМ РАН ²Сеченовский университет

XVII конференция «Математические модели и численные методы в биологии и медицине»

Аортальный клапан

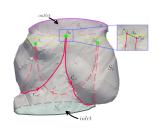
Расположен на границе левого желудочка и аорты, препятствуя обратному току крови из аорты в левый желудочек



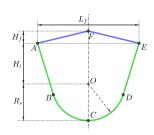
Стент аортального клапана

Шаблоны створок клапана на ткани перикарда

Макет технологии оптимизации дизайна створок



Математическая модель аортального клапана


- "Сухая" модель (без гемодинамики)
- ullet Створки оболочки Кирхгофа-Лява, $H\sim 0.2-0.5$ мм, $L\sim 15\sim 35$ мм
- Плотность створок $\rho_0 \approx 1 \text{ мг/мм}^3$
- ullet Створки из несжимаемого материала Гента с $E\sim 1000$ к Π а, $J_m=2.3$

$$\psi = -rac{EJ_m}{6}\ln\left(1-rac{I_1-3}{J_m}
ight)$$

- ullet Диастолическое давление $P \sim 80$ мм рт. ст. закрывает клапан
- ullet Пришиваемый край фиксирован: $\mathbf{x}|_{\Gamma_{csl}}=\mathbf{r}_{\mathit{asl}}$ и $\mathbf{x}_{'n}|_{\Gamma_{csl}}=\phi$
- Время достижения диастолического состояния T = 70 мc

Математическая формулировка задачи

• Уравнение механического равновесия в дифференциальной форме:

$$\operatorname{div}\sigma + \mathsf{b} = \mathsf{0} \ \mathsf{пр}\mathsf{u} \ \mathsf{x} \in \Omega_t,$$

где $\mathsf{b}=\mathsf{b}(\mathsf{x})$ - плотность внешних сил, $\sigma=\sigma(\mathsf{x},
abla\mathsf{x})$ - тензор напряжений

ullet Смешанные граничные условия $[\partial\Omega_t=\Gamma_u(t)\cup\Gamma_\sigma(t)]$:

$$\mathsf{x} = \overline{\mathsf{x}}$$
 на $\mathsf{\Gamma}_{\mathsf{u}}(t), \ \sigma_\mathsf{n} = \mathsf{0}$ на $\mathsf{\Gamma}_{\sigma}(t)$

Математическая формулировка задачи

• Уравнение механического равновесия в дифференциальной форме:

$$\operatorname{div}\sigma + \mathsf{b} = \mathsf{0} \ \mathsf{пр}\mathsf{u} \times \in \Omega_t,$$

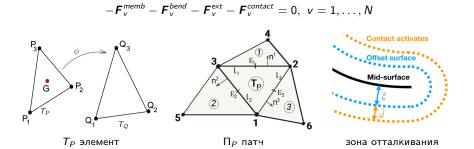
где $\mathsf{b} = \mathsf{b}(\mathsf{x})$ - плотность внешних сил, $\sigma = \sigma(\mathsf{x}, \nabla \mathsf{x})$ - тензор напряжений

ullet Смешанные граничные условия $[\partial \Omega_t = \Gamma_u(t) \cup \Gamma_\sigma(t)]$:

$$x = \overline{x}$$
 на $\Gamma_u(t), \ \sigma_n = 0$ на $\Gamma_\sigma(t)$

• Принцип виртуальной работы в случае гиперупругого материала: найти такое $\mathbf{x}\in ilde{H}^1(\Omega_t)\stackrel{def}{=}\{ec{v}\in (H^1(\Omega_t))^3: \mathbf{v}=\overline{\mathbf{x}}\ \mathit{Ha}\ \Gamma_u\}$ что

$$\delta I = \delta(W - U) = 0,$$


где

$$\delta U = \frac{\partial}{\partial x} \left(\int_{\Omega_{\mathbf{0}}} \psi(\nabla x) d\Omega \right) \cdot \delta x, \ \delta W = \int_{\Omega_{t}} b \cdot \delta x \ d\Omega$$

• Приближение тонкой оболочки $\delta U = \delta U^{memb} + \delta U^{bend}$, δU^{memb} зависит от изменения линейных расстояний, δU^{bend} зависит от изменения кривизны оболочки

Дискретизация уравнений движения оболочки

- ullet Конформная треугольная сетка в исходной области Ω_0
- Актуальное положение x P1 конечные элементы, 2d SVK: Delingette H., 2008
- ullet Аппроксимация кривизны κ на патче треугольников, Basic shell triangle: Oñate, Flores, 2005
- Метод инкрементального контактного потенциала (IPC) + отслеживание барьеров, IPC: Li M. 2020 и Huang Z. 2024
- Метод Ньютона с отслеживанием барьеров через оценку максимального допустимого шага

Вшивание Модель

Размещение створки в полости аорты

Алгоритм виртуального размещения створки

Вшивание

Размещение створки в полости аорты

Нелин. по длине отображение пришиваемой границы лепестка на поверхность аорты

Модель

Алгоритм виртуального размещения створки

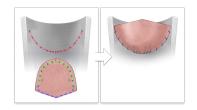
 Γ ран. условие х $|_{\Gamma_{csl}}=r_{asl}$ с нелин. по длине кривой Γ_{csl} функцией r_{asl}

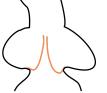
Вшивание

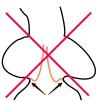
Алгоритм виртуального размеще

Размещение створки в полости аорты

Нелин. по длине отображение пришиваемой границы лепестка на поверхность аорты


Поджатие нитями внешней стороны створки к аорте


Алгоритм виртуального размещения створки


Модель

Гран. условие х $|_{\Gamma_{csl}}=r_{asl}$ с нелин. по длине кривой Γ_{csl} функцией r_{asl}

 Γ ран. условие выстилания $\mathbf{x}_{'n}|_{\Gamma_{csl}} = \phi$

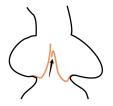
Вшивание

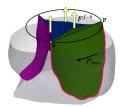
Модель

Размещение створки в полости аорты

Нелин. по длине отображение пришиваемой границы лепестка на поверхность аорты

Поджатие нитями внешней стороны створки к аорте


Регулировка конфигурации клапана, устранение пролапса


Алгоритм виртуального размещения створки

 Γ ран. условие х $|_{\Gamma_{csl}}=r_{asl}$ с нелин. по длине кривой Γ_{csl} функцией r_{asl}

Гран. условие выстилания $\mathbf{x}_{'n}|_{\Gamma_{\mathit{csl}}} = \phi$

Искусственная удерживающая сила при виртуальном размещении

Вшивание

Модель

Размещение створки в полости аорты

Нелин. по длине отображение пришиваемой границы лепестка на поверхность аорты

Поджатие нитями внешней стороны створки к аорте

Регулировка конфигурации клапана, устранение пролапса

Неплоская поверхность контакта

Алгоритм виртуального размещения створки

Гран. условие $\mathbf{x}|_{\Gamma_{csl}}=\mathbf{r}_{asl}$ с нелин. по длине кривой Γ_{csl} функцией \mathbf{r}_{asl}

 Γ ран. условие выстилания $\mathbf{x}_{'n}|_{\Gamma_{csl}} = \phi$

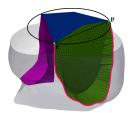
Искусственная удерживающая сила при виртуальном размещении

Неплоская поверхность контакта

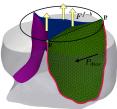
Алгоритм размещения створок внутри корня аорты

1. Размещение уменьшенных створок в просвете аорты

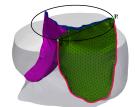
- уменьшаем створку, помещаем в аорту и тянем границу закрепления
- если есть физ. пересечения, повторяем процесс


2. Расправление створок

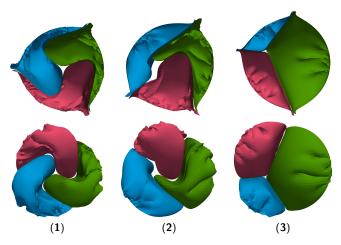
- последовательно увеличиваем нач. размер створки до истинного
- ullet решаем задачу стат. равновесия при F^{f-b} и P с материалом ψ_{NH}


3. Релаксация деформаций

- ullet последовательно меняем податливость материала lpha от 1 до 0
- ullet решаем задачу стат. равновесия при F^{f-b} и P с материалом


$$\psi_{\alpha}(\mathbb{C}) = \alpha \psi_{NH}(\mathbb{C}) + \psi(\mathbb{I} + (1 - \alpha)[\mathbb{C} - \mathbb{I}])$$

Размещ. уменьш. створок



Расправл. створок

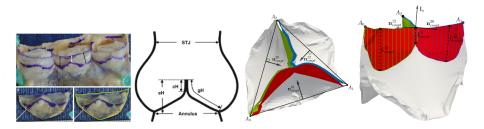
После расправл. и релакс.

Примеры размещения створок

Виртуальное размещение на цилиндрической аорте (1) больших одинаковых лепестков для правильного коммиссурального треугольника (ком. тр-а), (2) лепестков разных размеров несогласованных с размерами сторон разностороннего ком. тр-а, (3) лепестков с квази-оптимальными для заданного ком. тр-а размерами

О характеристиках коаптации

Зона коаптации – область соприкосновения лепестков


Эффективная высота — кратчайшее расстояние между вершиной коаптации створок аортального клапана и плоскостью фиброзного кольца

Центральная длина коаптации – ширина зоны коаптации, измеренная вдоль линии тройного соприкосновения лепестков

Боковая длина коаптации – наибольшая ширина зоны коаптации

Идеи обобщения определений:

- 1. Важны лишь внешние границы зон коаптации
- 2. Направление вдоль аорты I_a (для высот)
- 3. Направления разрезов n_{coapt}^{ij} (для ширины)

Первые шаги к валидации

- Поставлен натурный эксперимент об оценки замыкательной функции АК на 20 свиных корнях аорты 1
- Эксп. данные: геометрия аорты, створок, линии крепления, давление. Толщина створок и их жёсткость неизвестны, были взяты как H=0.2 мм, E=3000 кПа
- Коаптация в экспериментах превышала физиологические значения, поскольку процедура Озаки выбора размера шаблонов не подходит для свиной аорты

	$L_{coapt,I}$	$L_{coapt,r}$	L _{centr}	H_{eff}^{mean}	H _{bill}	S _{coapt}
min	10.69	9.62	7.71	7.12	1.26	173.3
max	20.97	18.31	17.40	13.72	9.33	622.9
mean	14.77	14.37	11.52	9.98	4.25	400.7
MPE	+15.8%	+17.8%	+9.4%	+48.5%	-23.9%	+0.4%
MAPE	18.3%	19.9%	13.1%	48.5%	40.2%	5.5%

Результаты натурных экспериментов и их сравнение с численными расчётами.

$$MPE(A) = 100\% \, \, \frac{1}{N} \sum_{i=1}^{N} \frac{A_{i}^{num} - A_{i}^{nat}}{A_{i}^{nat}} \, \,$$
 in $MAPE(A) = 100\% \, \, \frac{1}{N} \sum_{i=1}^{N} \left| \frac{A_{i}^{num} - A_{i}^{nat}}{A_{i}^{nat}} \right|$

• Даже несмотря на отсутствие данных о мех. с-вах используемого перикарда и его толщины, а также пренебрежение изгибной жёсткостью, по ряду параметров демонстрируется согласованность с натурным экспериментом

¹Каравайкин, П. А. Математическое моделирование в прогнозировании замыкательной функции аортального клапана после неокуспидизации : Канд. дис.:3.1.15

Выводы

- Предложена персонализированная модель для оценки коаптации реконструированного аортального клапана в диастолическом состоянии
- Отмечены некоторые особенности хирургического вшивания створок и с их учётом предложен автоматический алгоритм виртуального размещения тонких створок клапана в просвете корня аорты пациента
- Математически формализованы медицинские понятия, используемые для оценки состоятельности АК
- Представлено сравнение расчётов закрытия клапанов Озаки на ряде геометрий корня аорты свиней с результатами натурного эксперимента.

Работа выполнялась при поддержке проектов РНФ 19-71-10094, 21-71-30023 и при поддержке МЦМУ ИВМ РАН 75-15-2022-286 и 075-15-2025-347

Спасибо за внимание!