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1. Epidemic delay model
dS (t )
dt

=−J (t )+J (t−τ1−τ 2) , (1a)

dI (t )
dt

=J (t )−J (t−τ1) , (1b)

dR(t )
dt

=J (t−τ1)−J (t−τ1−τ2) , (1c)

J (t )= β
N
S (t ) I (t ) , (1d)

where is the disease duration,  is the duration of immunity, and τ1 τ2

β is the disease transmission rate.  

Total size of population  N=S (t )+ I (t )+R (t ) . (2)

System (1) is completed with the initial conditions

S (θ)=N , I (θ)=R (θ)=0 ∀θ ∈ [−τ1−τ2 ,0 ) , S (0)=N−I (0) , I (0)>0 , R (0)=0. (3)
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2. Existence and stability of stationary solutions 

2.1 Reduction to an integral equation

Integrating Eq (1a) and Eq (1b) from 0 to t, then substituting in Eq (1d), we obtain 

J (t )= β
N

(S0− ∫
t−τ1−τ2

t

J (η)d η)( I 0+∫
t−τ1

t

J (η)d η) . (4)

Thus, we have reduced system (1) to a single integral equation.
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2.2 Stationary solutions 

Stationary solutions of equation (4) can be found from the following algebraic equation: 

J s=
β
N

(S0−(τ1+τ2)J s)( I 0+τ1 J s) . (5)

The positive solution of previous equation is given by the formula 

J s=
−( β
N

+(τ1+τ2) I 0−τ1S0)+√Δ

2 τ1(τ1+τ2)
, (6)

Δ=( β
N

+(τ1+τ2) I 0−τ1S0)
2

+4 S0 I 0 τ1(τ1+τ2)>0.

If I0 ≈ 0 and S0 ≈ N , then we find two approximate solutions of the previous equation: 

J s=0 , J s=
N (β τ1−1)
β τ1(τ1+τ2)

. (7)
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In this case, a positive stationary solution exists if the basic reproduction number ℜ0 = βτ1 is 

larger than 1, allowing us to determine the stationary values of susceptible, infected, recovered 

and productive as: 

Ss=
N
β τ1

, I s=
N (β τ1−1)
β (τ1+τ2)

, Rs=N−Ss−I s . (8)
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2.3. Stability of the stationary solution 

Equation (4), linearized about the stationary solution, by setting                            and 

keeping the first-order terms with respect to    , has the following form

J (t)=J s+ϵeλ t

ϵ

v (t )=−a1 ∫
t−τ1−τ2

t

v (x)dx+a2 ∫
t−τ1

t

v (x)dx , (9)

where

a1=
β
N

( I (0)+ N
β

β τ1−1

τ1+τ2

) , a2=
β
N

(S (0)− N
β τ1

(β τ1−1)) . (10)

Set                     Then, from  (9) we obtain the equation for the principal eigenvalue  which 

determines infection growth rate as follows

λ=−a1(1−e−(τ1+τ2) λ)+a2(1−e−τ1 λ) . (11)

v(t)=eλ t .
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Clearly,              is a solution of Equation (11). We will study the existence of solutions of 

this equation with a positive real part, which determines the loss of stability of the 

stationary solution.

λ=0

In order to simplify this analysis, we set I(0)=0, S(0)=N in (10), so we get

a1=
β τ1−1

τ1+τ2

, a2=
1
τ1

.

Theorem 1. The following properties hold: 

● If ℜ0 > 1 and Js > 0, then equation (11) does not have nontrivial positive real solutions. 

● Let Js = 0. If ℜ0 > 1, then equation (11) has exactly one positive real solution. If ℜ0 < 1, then 
this equation has only negative real solutions. 

● There exists some value ℜc > 1, for which equation (11) has a pure imaginary solution .
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3. Influence of isolation on epidemic progression 

Isolation of a part of the population can influence epidemic progression and decrease the 

number of infected individuals. 

3.1 Model without immunity waning (single outbreak) 

We model partial lockdown in which a part of the population is isolated and cannot be 

infected. 

Isolation begins before epidemic outbreak and stops after the outbreak. 

We will determine the optimal proportion of isolated people which minimizes the number of 

infected individuals.
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We consider the following system of equations: 

dS (t )
dt

=−J (t ) , (12a)

dI (t )
dt

=J (t )−J (t−τ1) , (12b)

dR (t )
dt

=J (t−τ1) , (12c)

J (t )= β
N (t )

S (t ) I (t ) . (12d)

We impose a partial lockdown at time t1 with duration T1 and proportion of isolated population 

k1  (0, 1) of the total population ∈ N0:

N (t1)=(1−k1)N 0 , S (t1)=S (t1)−k1N 0 , N (t1+T 1)=N 0 , S (t1+T 1)=S (t1+T 1)+k1N 0 . (13)

System (12) is considered with the following initial conditions 

S (θ)=N 0 , I (θ)=0 :∀θ∈[−τ1 ,0 ) , S (0)=S0>0 , I (0)=I 0>0 (S0+ I 0=N 0) , R (0)=0. (14)
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Figure 1.

Susceptible, infected and recovered populations in numerical simulations of System (12) for 

initial conditions N0 = 106, S(t) = N0, I(t) = R(t) = 0 ∀t  [−∈ τ1,0), S(0) = N0 − 1, I(0)=1, R(0) = 0 

and parameters β = 0.3, τ1 = 10. Panel (a): without isolation. Panel (b): a part of the 

population is isolated before epidemic outbreak and returns afterwards (t1 = 0, T1 = 120, k1 ≈ 

0.29). Panel (c): t1 = 0, T1 = 120, k1 = 0.6. 
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Analytical estimate: 

Let us determine the value of k1 which provides the minimal total number of infected individuals. 
The equation which find the number of susceptible individuals Sf at the end of the outbreak, 
taking into account that a part of the population is isolated is given by

ln (w)=ℜ0(w−1) , (15)where 

w=
S f

(1−k1)N 0

and ℜ0=β τ 1 .

Eq (15) has a solution w  (0, 1) if ∈ ℜ0 > 1. When isolated people are returned after lockdown 

is finished, the total number of susceptible becomes Sf + k1N0, and the new value of the basic 

reproduction number is ℜ0 '=ℜ0((1−k1)w+k1) .

Epidemic does not restart after the end of isolation when ℜ0′ = 1 and we obtain

k1=
1/ℜ0−w

1−w
. (16)

The minimal total number of infected individuals is given by the formula 

I total=(1−k1)(1−w)N 0 . (17)
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Example:  If ℜ0 = 3, then from equation (15) we obtain w≈0.06, and from (16) and (17),           

k1 ≈ 0.29, Itotal/Ntotal ≈ 0.67. 

On the other hand, without lockdown (k1 = 0), we obtain  Itotal/Ntotal ≈ 0.94. 

Thus, isolation allows about 30% reduction of the proportion of infected individuals. 

This analytical result is confirmed numerically by Fig 2.
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Figure 2.

Dependence of the total number of infected individuals Itotal on the proportion of isolated 

population k1 in the model (12) without immunity waning.                                                          

The values of parameters: N0 = 106 , β = 0.3, t1 = 0, T1 = 120, I(0) = 1. 
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3.2 Model with immunity waning (periodic outbreaks) 
dS (t )
dt

=−J (t )+J (t−τ1−τ2) , (18a)

dI (t )
dt

=J (t )−J (t−τ1) , (18b)

dR (t )
dt

=J (t−τ1)−J (t−τ1−τ2) , (18 c)

J (t )= β
N (t )

S (t ) I (t ) , (18d)

and we impose consecutive lockdowns (before each epidemic outbreak) characterized by 

the moment tj when they begin, duration Tj , and the proportion kj  (0, 1) of isolated ∈

population: 

N (t j)=(1−k j)N 0 , S (t j)=S (t j)−k jN 0 , N (t j+T j)=N 0 , S (t j+T j)=S (t j+T j)+k jN 0 . (19)

System (20) is considered with the following initial conditions 

S (θ)=N 0 , I (θ)=0 :∀θ∈[−(τ1+τ2) ,0 ) , S (0)=S0>0 , I (0)=I 0>0 (S0+ I 0=N 0) , R (0)=0. (20)
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Figure 3.

Susceptible, infected, and recovered populations in numerical simulations of System (18) with 

parameter values β = 0.3, τ1 = 10,τ2 = 180,N0 = 106, I(0) = 1. In panel (a), we impose the 

following four lockdowns: {(t1 = 0,T1 = 130,k1 = 0.42), (t2 = 215,T2 = 130,k2 = 0.42), (t3 = 430, 

T3 = 130,k3 = 0.42), (t4 = 635,T4 = 130,k4 = 0.42)}. The average annual number of infected 

individuals is Iavr = 682,405. In panel (b), we impose the following four lockdowns: {(t1 = 0,T1 = 

150,k1 = 0.5), (t2 = 205,T2 = 150,k2 = 0.5), (t3 = 410,T3 = 150,k3 = 0.5), (t4 = 600, T4 = 150,k4 = 

0.5)}. The average annual number of infected individuals is Iavr = 588,353. 

16

(a) (b)



  

Figure 4.

Dependence of the annual average number of infected individuals                                          

on the proportion of isolated people in the model (18) with immunity waning and periodic 

outbreaks. The values of parameters: N0=106 , β=0.3, τ2=180, I(0) = 1. 

I avr=
1
n τ 1

∫
0

365n

I (η)d η
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4. Discussion

● In this talk, we proposed an epidemiological model that incorporates a system of delay 

differential equations, featuring two time delays correspond to the duration of the disease 

and the period of natural immunity. 

● The reduction of the delay model to an integral equation allows us to study stationary 

solutions of this model and their stability. A positive stationary solution appears for the 

basic reproduction number larger than 1. It loses its stability and leads to periodic 

oscillations if the basic reproduction number exceeds some critical value.  

● Imposing partial lockdowns reduces the epidemic.

● One of the main results of this work is the determination of the optimal proportion of 

isolated people. 
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● In the case without immunity waning, this optimal choice represents the maximal 

proportion of isolated for which the epidemic does not restart when the isolation is 

finished. This condition allows us to determine this optimal proportion analytically. 

● In the case with immunity waning, the annual average number of infected individuals 

is a decreasing function with respect to the proportion of isolated people during 

lockdowns, and does not have a local minimum as in the model with permanent 

immunity. 

● This study has some limitations. First, discrete delays prescribe single values of the 

disease duration and immunity waning instead of distributions. Furthermore, we did 

not consider exposed compartments, which may have some influence on the 

economic state of the population. These questions and some others represent 

interesting open questions for forthcoming works. 
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Thanks for attention !
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