Разработка методики исследования прочностных характеристик сосудистых стентов методом конечных элементов

Боголюбова Ю.А.¹, студентка каф. БМТ2 Варлыгин В.О.¹, студент каф. БМТ2 Оськин А.А.¹, студент каф. БМТ2 Рудаков С.Е.¹, студент каф. БМТ2

<u>Научные консультанты:</u> Ермолаев Евгений Сергеевич¹, к.б.н. Пошехонов Роман Александрович¹, к.т.н.

¹ Московский Государственный Технический Университет имени Н.Э. Баумана, Москва, Россия

Постановка проблемы

Около 17 миллионов человек ежегодно умирают от CC3. Количество людей, страдающих от ССЗ растет в России и в мире. Основной причиной смертности от ССЗ является ИБС Стентирование является Золотым стандартом лечения ИБС Актуальной целью является разработка оптимальной формы наименьшего повторяющегося элемента стента, характеризующегося минимальным значением напряжений в узлах после его раскрытия.

Выбор расчетного элемента стента

с - толщина элемента, *H* – высота, *D* – диаметр стента;

$$H = \frac{\pi D}{N}$$

Размеры расчетного элемента

Фиксированные параметры

Радиус скругления $R_{скруг} = 0,2$ мм Радиус внешнего скругления $R_{внеш.скруг} = 0,05$ мм Радиус внутренней окружности $R_{внутр} = 0,45$ мм Расстояние от центра сегмента до центра окружности R = 0,5 мм

Число расчетных сегментов вдоль окружности N = 6 Толщина вдоль оси z Z = 0, 1 мм

Варьируемые параметры

Большая полуось эллипса, мм 0, 25 < *a* < 0, 45 Малая полуось эллипса, мм 0, 25 < *b* < 0, 45 Толщина элемента, мм 0, 05 < *c* < 0, 15

Механические характеристики материала

5

Сплав на основе Со-Сг

Сетка конечных элементов

Жизненный цикл стента: последовательность нагружения

Стадии нагружения	U , MM
I. Обжатие на баллоне	$U=rac{\pi D_{ m Haчaльhoe}-\pi D_{ m cжaтия}}{2N}$
2. Разгрузка	Свободен
3. Раскрытие стента	$U = rac{\pi D_{ m pаскрытия} - \pi D_{ m Hачальное}}{2N}$
4. Разгрузка	Свободен

Жизненный цикл стента: последовательность нагружения

Параметры качества стента

Выдвигаемые требования		
$Recoil = \frac{D}{(D-u\cdot N)}$	%	<4
Временное сопротивление при растяжении _{σ_b}	МΠа	1000
Радиальное давление	кПа	80

9

Пример расчета

Распределение напряжений (МПа) в элементарной ячейке 2D-модели стента

При установке на баллон

При раскрытии до размеров, соответствующих диаметру пораженного сосуда

Сравнение двух типов форм ячеек стента

Пологая форма (recoil = 3,4%)

Математическая модель оптимизации характеристик

Наибольшее совпадение желаемых параметров: минимальный recoil и минимальное напряжение

Математическая модель оптимизации характеристик

Математическая 3D модель максимальной нагрузки при толщине

повторяющегося элемента 0.15

X1 = A

X2 = B

Математическая 3D модель максимальной нагрузки при толщине повторяющегося элемента 0.1

Математическая 3D модель максимальной нагрузки при толщине повторяющегося элемента 0.05

Математическая модель оптимизации характеристик

14

XI = A

XZ = B

C = 0.05

Математическая 3D модель отскока при толщине повторяющегося элемента 0.15

X1 = A

X2 = 8

C - 015

Математическая 3D модель отскока при толщине повторяющегося элемента 0.1

Математическая 3D модель отскока при толщине повторяющегося элемента 0.05

15 Технологическая схема процесса оптимизации формы элементарной ячейки

*Патент РФ 2 810 438. Способ моделирования стентов.

16

Применение математического моделирования

Фемтосекундная лазерная твердотельная система на иттербиевом кристалле

- Один из самых компактных лазеров в своем классе
- Высокое качество пучка и M2 < 1.15
- Мощность 10 Вт
- Более 2 мДж в импульсе
- Длительность импульса < 270 фс
- Высокая температурная и долговременная стабильность
- Монолитный термостабилизированный корпус

Список использованных источников

[1] Каstrati А. и др. Restenosis after coronary placement of various stent types // The American journal of cardiology. 2001. № 1 (87). С. 34–39.
 [2] Черняев М. В. и др. Непосредственные и среднеотдаленные результаты применения стента с лекарственным покрытием калипсо при остром коронарном синдроме //Диагностическая и интервенционная радиология. – 2017. – Т. 11. – №. 4. – С. 42-47.

[3] Лущик П. Е., Рафальский И. В., Заблоцкий А. В. Механические характеристики сердечно-сосудистых стентов на основе Со-Сг после электрохимической обработки. – 2023.

[4] Ермолаев Е., Масленников М. Стентовые технологии: история, организация производства, рынок // Издательство МГТУ им. Н.Э.
 Баумана. 2022. №169 (1) С.102.

[5] Патент РФ 2 810 438. Способ моделирования изделия, устанавливаемого в просвет полых органов для расширения участка, суженного патологическим процессом / Ермолаев Е.С. Заявл. 02.12.2022 Опублик. 27.12.2023

[6] Ferreira S. L. C. et al. Box-Behnken design: an alternative for the optimization of analytical methods //Analytica chimica acta. – 2007. – T. 597. – №. 2.
 – C. 179-186.

[7] Freeman J. W., Snowhill P. B., Nosher J. L. A link between stent radial forces and vascular wall remodeling: the discovery of an optimal stent radial force for minimal vessel restenosis //Connective tissue research. $-2010. - T. 51. - N_{\odot}. 4. - C. 314-326.$

[8] Donnelly E. и др. Finite element comparison of performance related characteristics of balloon expandable stents // Computer Methods in Biomechanics and Biomedical Engineering. 2007. № 2 (10). С. 103–110.

[9] ГОСТ Р. 25539-2-2012. Имплантаты сердечно-сосудистые. Внутрисосудистые имплантаты. Часть. – Т. 2. Дата введения: 30 августа 2012.

Спасибо за внимание!

