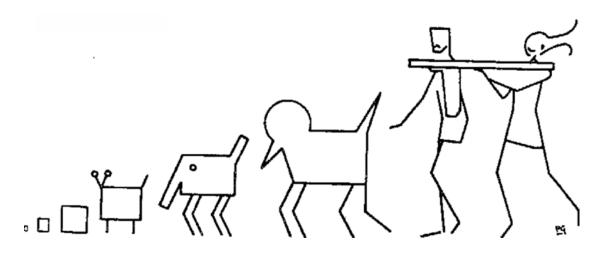
Скейлинговая теория полимеризации фибрина

С.В. Панюков

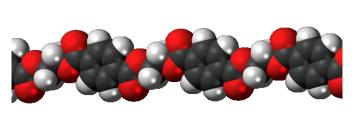

ФИАН им. П.Н.Лебедева, МФТИ

Модели полимеризации фибрина

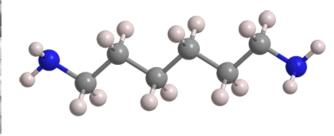
Система ОДУ

Name	Value	Units	Name	Value	Units
k _{pp}	0.012	nM ⁻¹ s ⁻¹	K _{10M}	63.0	nM
k_{p2}	0.017	s ⁻¹	k_{PRO}^{+}	0.4	$nM^{-1}s^{-1}$
k ⁺ ₇₇	0.0032	nM ⁻¹ s ⁻¹	k_{PRO}^{-}	0.2	s ⁻¹
k-77	0.0031	s ⁻¹	k_2^+	0.01	nM ⁻¹ s ⁻¹
k _{77a}	0.023	nM ⁻¹ s ⁻¹	k_2^-	5.9	s ⁻¹
k-77a	0.0031	s ⁻¹	k ₂	22.4	s ⁻¹
k _{TF7}	0.00044	nM ⁻¹ s ⁻¹	K_{2M}	1060.0	nM
$k_{10,7}$	0.013	nM ⁻¹ s ⁻¹	k ₈ *	0.0043	nM ⁻¹ s ⁻¹
k _{2,7}	0.000023	nM ⁻¹ s ⁻¹	k ₈	0.00246	s ⁻¹
h ₇ AT	0.00000045	nM ⁻¹ s ⁻¹	k ₈ ^m	0.9	s ⁻¹
h ₇ ^{TP}	0.05	n M ⁻¹ s ⁻¹	K_{8M}^{m}	200.0	nM
k7,9	0.26	s-1	k_{8t}^m	0.023	s-1
$K_{7,9M}$	243.0	nM	K_{8tM}^{m}	20.0	nM
h9	0.0002223	nM ⁻¹ s ⁻¹	k ⁺ ₅	0.057	nM ⁻¹ s ⁻¹
$k_{7,10}$	1.15	5 ⁻¹	k <u>₹</u>	0.17	s ⁻¹
K _{7.10M}	450.0	nM	k_5^m	0.23	s^{-1}
h ₁₀ h ₁₀ h ₁₀ h ₁₀ h ₁₀	0.00000305	nM ⁻¹ s ⁻¹	K_{5M}^{m}	71.7	nM
h_{10}^{7P+}	4.381	nM ⁻¹ s ⁻¹	k_{5t}^m	0.046	s ⁻¹
h_{10}^{7P-}	0.00000005293	nM ⁻¹ s ⁻¹	K ^m _{5tM}	10.4	nM
k_{2t}	0.0000075	nM ⁻¹ s ⁻¹	k_f	59.0	s ⁻¹
h_2	0.000179	nM-1s-1	K_{fM}	3160.0	nM
k ₈	0.9	s ⁻¹	K ₁₄	1400.0	nΜ
K _{8M}	147.0	nM	N_x	25000	-
h ₈	0.0037	s ⁻¹	N_{II}	30000	-
k ₅	0.233	s ⁻¹	N_{IIa}	1000	-
K _{5M}	71.7	nM	NIX	250	-
h ₅	0.0028	s ⁻¹	N_{IXa}	550	-
k ₉ +	0.01	nM ⁻¹ s ⁻¹	N_V	2700	-
k-5	0.0257	s ⁻¹	N _{VIII}	750	-
k ⁺ _{TEN}	0.01	nM ⁻¹ s ⁻¹	C_{10}^{*}	120	пM
k _{TEN}	0.005	s ⁻¹	β	0.66	-
k_{10}^{+}	0.029	nM ⁻¹ s ⁻¹	k_p	0.00066	nM ⁻¹ s ⁻¹
k_10	3.3	s-1	k_{lat}	0.0004	nM ⁻¹ s ⁻¹
k10	8.3	s ⁻¹	k_{vol}	10000	s ⁻¹

Скейлинговая модель

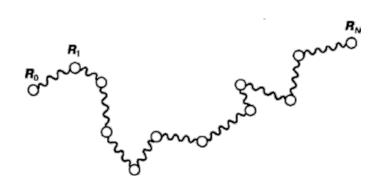


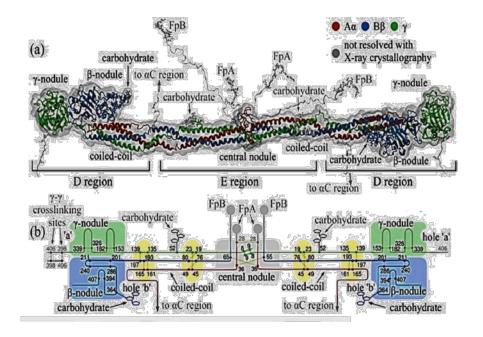
Различные животные пытаются следовать скейлинговому закону (© Де Женн)


- 1) Физика на больших шкалах не зависит от мелкомасштабной структуры объектов
- 2) Нахождение аналитических зависимостей

Параметры (*очень*) упрощенной модели

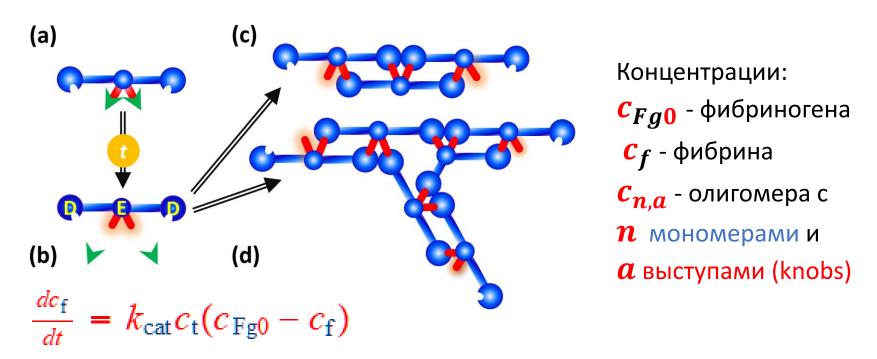
Упрощенные (coarse-grained) модели




PET $(C_{10}H_8O_4)$

Полиэтилен

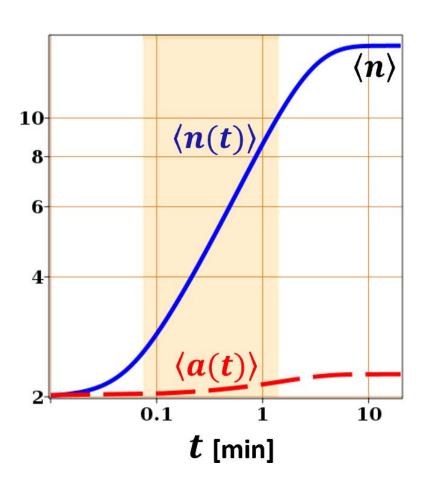
Гексаметилнедиамин



Гауссовая полимерная цепочка

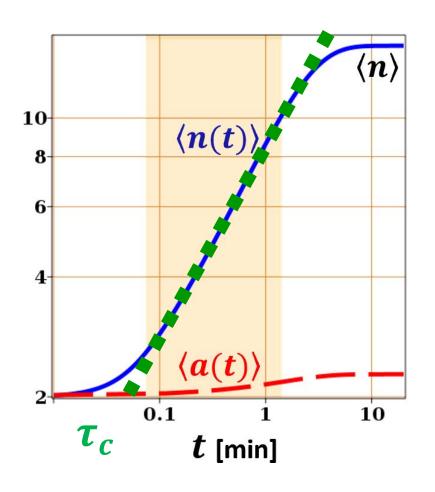
Мономер фибрина

Knob-to-hole модель полимеризации



Диффузно-контролируемые реакции мономеров с олигомерами

$$\frac{dc_{n,a}}{dt} = k_1 a c_{n-1,a} c_1 + k_b (a-1) c_{n-1,a-1} c_1$$
$$-(k_1 + k_b) a c_{n,a} c_1$$

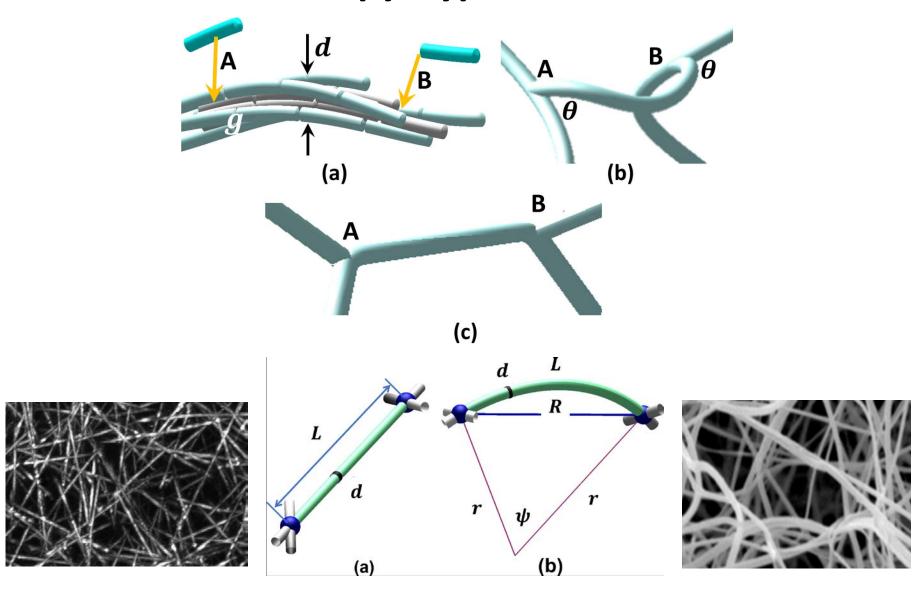

Заданы начальные концентрации фибриногена c_{Fg0} (в единицах mg/L) и тромбина c_{t} (в единицах U/ml)

Численное решение Knob-to-hole модели

 $m{n}(m{t})$ — число мономеров олигомера $m{a}(m{t})$ — число выступов олигомера

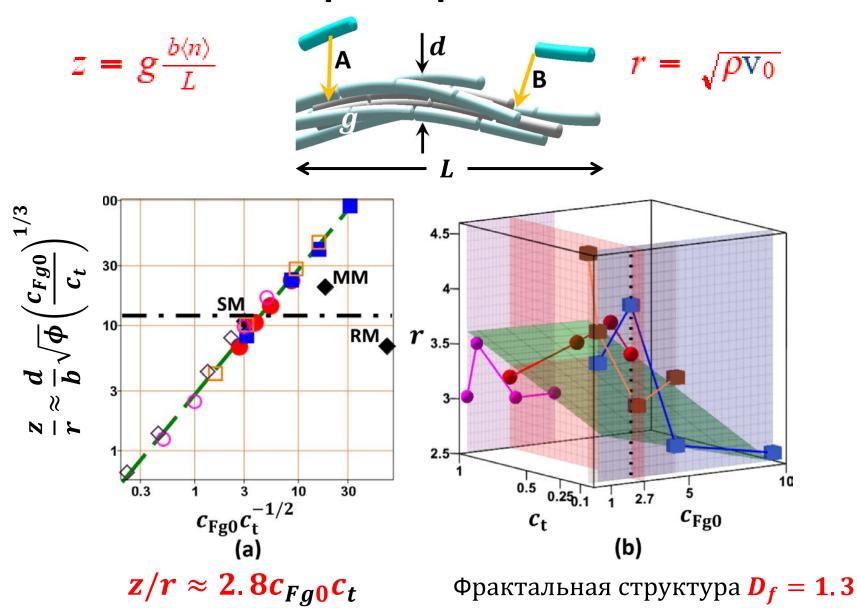
Аналитическое решение Knob-to-hole модели

Полимеризация начинается только спустя время $oldsymbol{ au_c}$


 au_c определяет также скорость полимеризации

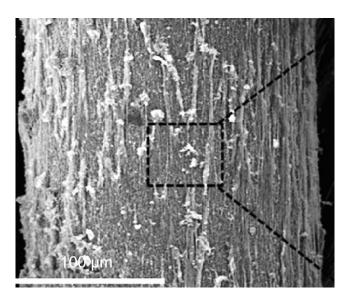
$$\langle n(t) \rangle \simeq \left(\frac{t}{\tau_c}\right)^{2/3},$$

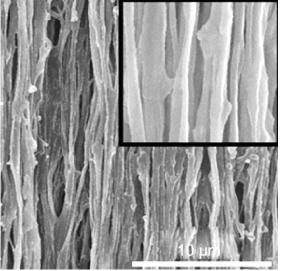
 $\tau_c \simeq \left(k_1 k_{cat} c_{Fg0} c_t\right)^{-1/2}$


Фибриновый клей — при высоких концентрациях

$$c_{Fg0}$$
 и c_f

Структура сеток

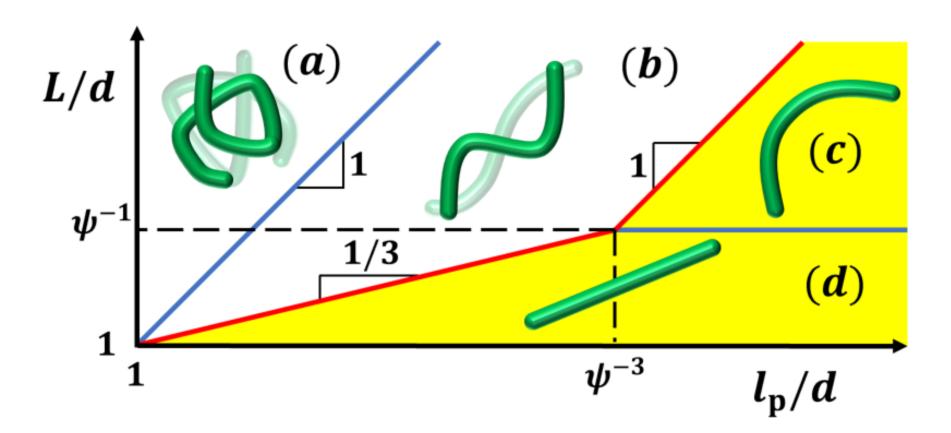

Параметры сеток



Параметры сеток

$$z = g \frac{b\langle n \rangle}{L}$$

$$r = \sqrt{\rho v_0}$$


$$d \simeq \frac{zb}{r\langle n \rangle} \frac{\mathbf{v}_0}{b^3 \sqrt{\phi}}$$

$$\xi \simeq L \simeq \frac{zb}{\langle n \rangle} \frac{\mathbf{v}_0}{b^3 \phi}$$

	Purified Fibrinogen	
	Increasing	Increasing
	Fibrinogen	Thrombin
SEM Diameter	↑	↓
Pore Size	<u> </u>	
% Area	†	†
Fiber Length	\downarrow	\downarrow

Упругий модуль сеток

$$G \simeq \frac{k_{\rm B}T}{\xi^2} \frac{l_{\rm p}^2}{L^3 + l_{\rm p} (d^2 + L^2 \psi^2)}$$

Основные выводы

- 1) Построена простая аналитическая теория фибринных сеток.
- 2) Протофибриллы образуются в результате **диффузионно- контролируемых** реакций со свободными мономерами.
- 3) Вычислена зависимость длины **протофибрилл** от концентраций фибриногена и тромбина.
- 4) Вычислены параметры **Z** и **Y**, определяющие продольное **и** латеральное упорядочение волокон.
- 5) Вычислена зависимость структуры сетки от концентраций фибриногена и тромбина: При малом отношении концентраций образуются редкие сетки из толстых и длинных волокон, при большом плотные сетки из тонких и коротких волокон.
- 6) Предсказанные количественные зависимости *согласуются с экспериментальными данными*.
- 7) Построена фазовая диаграмма фибринных сеток.