

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ГИДРОДИНАМИЧЕСКОЙ АКТИВАЦИИ ТРОМБОЦИТОВ В ИНТЕНСИВНЫХ ТЕЧЕНИЯХ КРОВИ

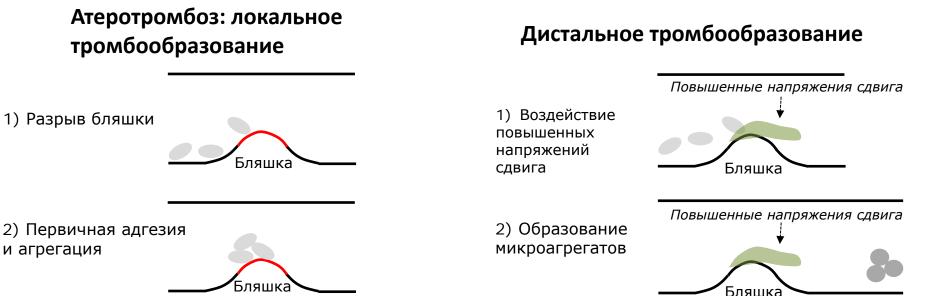
Д. М. Пушин

НМИЦ гематологии, Москва, Россия

Email: pushin.d@blood.ru

Москва, 3 ноября, 2023

Актуальность темы


- 1. Артериальный тромбоз типа является причиной примерно **25** процентов смертей по всему миру (*Jackson Nat. Med. 2011(17):1423-56*)
- 2. Тромбы в артериях образуются в условиях повышенного напряжения сдвига, причем тромбоциты играют **ключевую** роль в их образовании (*Chen & Ju et al. Stroke Vasc. Neurol. 2020(5):185-97*)
- 3. Существует **биомеханический** путь активации артериального тромбообразования, о чем свидетельствует ограниченная эффективность клинически доступных антитромботических препаратов и результаты многочисленных *in vitro* экспериментов (Rana et al. Front. Cardiov. Med. 2019(6): 1-21)
- 4. Ключевую роль в биомеханическом пути активации играет взаимодействие макромолекул фактора фон Виллебранда (VWF), способных разворачиваться в условиях повышенных сдвиговых напряжений, с тромбоцитами (Casa & Ku Ann. Rev. BioMed. Eng. 2017(19):415-33);

Современные методы медицинской визуализации и вычислительной гидродинамики позволяют картировать распределение напряжения сдвига в крупных сосудах, где реализуются нестационарные сдвиговые условия. Установление связи между конформационной динамикой макромолекул VWF и активацией тромбоцитов в условиях нестационарных сдвиговых напряжений должно позволить оценивать риски активации тромбообразования

Активация дистального тромбообразования

3) Активация тромбоцитов и стабильная агрегация

3) Тромбирование микроциркуляции

Гидродинамическая активация тромбоцитов увеличивает риск развития тромбоэмболических осложнений даже в **отсутствии** повреждений эндотелиального слоя

Бляшка

Состояние области

Стационарные сдвиговые напряжения

1. Существование порога $\tau_{\#} \ (\approx 100 \, \text{дин/cm}^2)$ Kroll et al. //Blood. 1996:88(5);1525-41; Lee et al. //Biomicrofluid. 2016:10;1-10

- 2. Уровень активации тем выше, чем выше размер мультимеров VWF Moake et al. //J. Clin. Invest. 1986:95(5);2556-74; Shankaran et al. //Blood. 2003:101(7);2637-45; Dayananda et al. //Blood. 2010:116(19);3990-98
- 3. Теория: индекс активации PARI, условия разворачивания VWF

$$PARI \sim \frac{\tau}{\tau_C} (n - n_a)^{-\frac{2}{3}} > 1$$

 $au_{th,wall} \sim N^{-\frac{1}{3}}$

 $\tau_{th,free\ flow} \sim N^{\frac{1}{3}}$

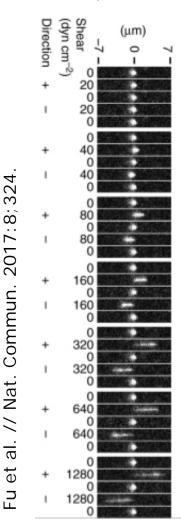
Zlobina & Guria // Sci. Rep. 2016:6;1-6; Alexander-Katz & Netz // Macromol. 2008:41(9);3363-74

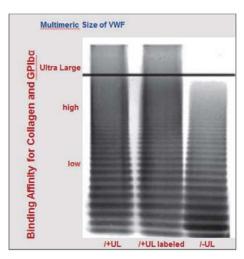
Нестационарные сдвиговые напряжения

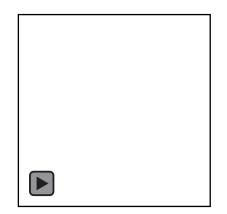
1. Условие активации

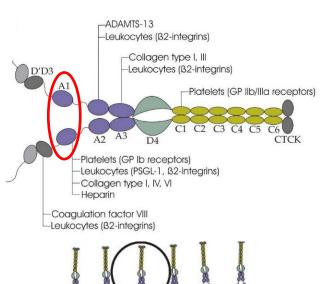
$$extit{CSS} \equiv \int_{t_{in}}^{t_{out}} \!\! au(t) dt > extit{CSS}_0 \qquad \qquad extit{CSS}_0 > 10 \ extrm{дин} \cdot extrm{c/cm}^2$$

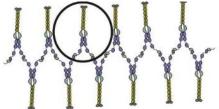
Bluestein et al. // Ann. Biomed. Eng. 1997:25(2);344-56; Hansen et al. // Ann. Biomed. Eng. 1997:25(2);344-56


- 2. Ингибирование связывания с VWF подавляет сдвиговую активацию тромбоцитов Rahman et al. // Lab on Chip. 2021:21(1);174-83
- 3. Теория: континуальные модели, крупнозернистые модели Liu et al. // Blood Adv. 2022:6(8);2453-65; Wu et al. //Int J Eng Scien. 2020:147;1-17 Не учитывается степень мультимерности в континуальных моделях, крупнозернистые модели не применимы для расчетов в крупных сосудах.


Фактор фон Виллебранда


A) Globule-stretch Transition ($\tau \sim 100$ дин/см²)

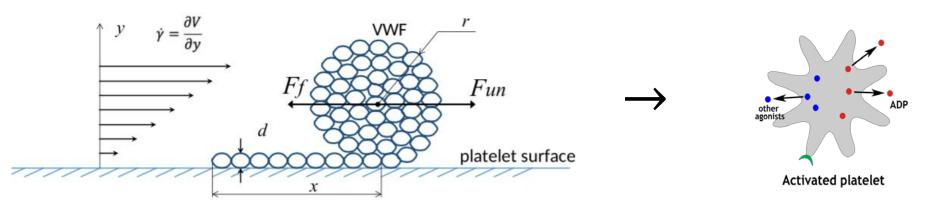

Б) Гетеродисперсное распределение



Reininger // Hamostaseologie. 2015: 35(3); 225-33.

С) Схематичное представление субъединицы

Okhota et al. // Int J Mol Sci. 2020: 21; 7804.


Wang et al. // Biophys J. 2019: 116(11); 2092-102.

Капельная модель

Квазистатика

$$\frac{dE}{dx} = \sigma[\pi dx + 4\pi r^2(x)]$$

$$\longrightarrow \qquad F_f = \sigma \pi d \left(1 - \frac{d}{2r}\right)$$

$$E_{un} = k\pi r^2 \tau$$

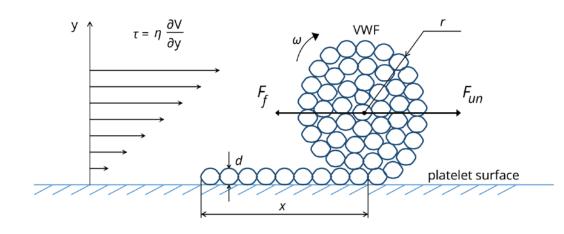
$$E_{un} = k\pi r^2 \tau$$

Zlobina K. E., Guria G. T. (2016). Platelet activation risk index as a prognostic thrombosis indicator. Sci Rep., 6, 30508.

Капельная модель

Динамика

$$(J_r\omega)'_t = (F_{un} - F_f)r$$


2a)
$$F_{un} = k\pi r^2 \tau; \quad F_f = \sigma \pi d \left(1 - \frac{d}{2r}\right);$$

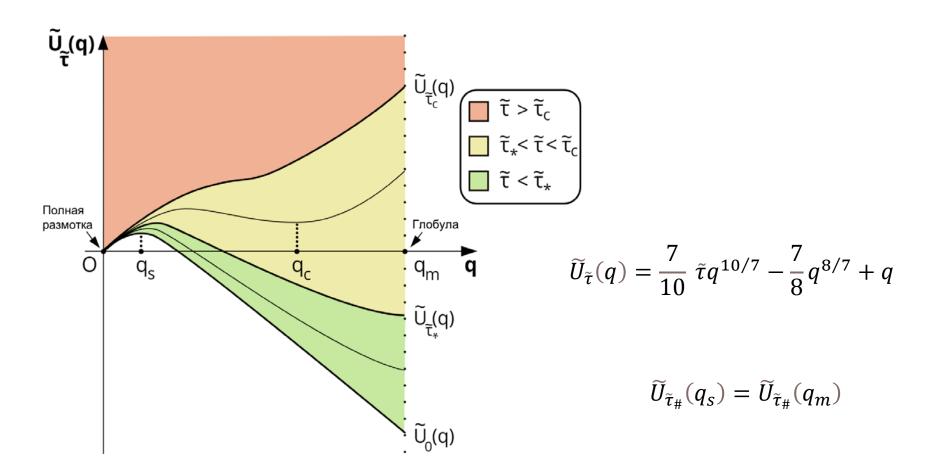
26)
$$J_r = \frac{7}{5}(m_0 n_r)r^2 = \frac{112}{15} \frac{m_0}{d^3} r^5$$

2B)
$$\omega = \frac{1}{r}x'_t = -\frac{16}{d^2}rr'_t$$

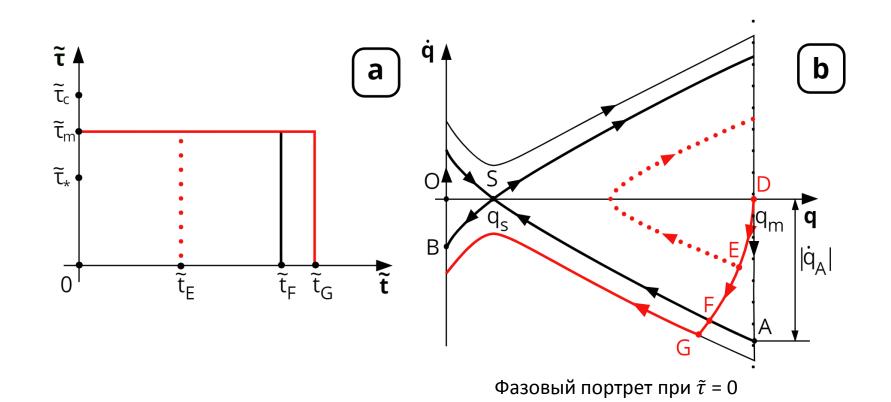
2г)
$$n = n_x + n_r$$
 или $\frac{L}{d} = \frac{x}{d} + \frac{16}{3} \frac{r^3}{d^3}$

4)
$$q_{\tilde{t}\tilde{t}}^{\prime\prime} = -\tilde{\tau}q^{3/7} + q^{1/7} - 1$$

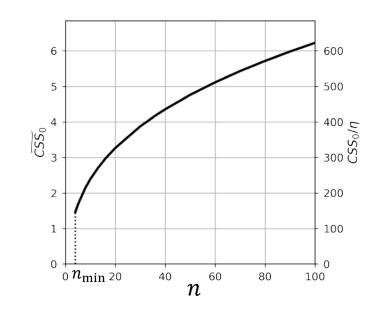
3)
$$\frac{4m_0}{15\sigma\pi} \left[\left(\frac{2r}{d} \right)^7 \right]_{tt}^{\prime\prime} = -\frac{k\tau d}{4\sigma} \left(\frac{2r}{d} \right)^3 + \left(\frac{2r}{d} \right) - 1$$


где
$$q = (2r/d)^7$$
 $q_m = (3n/2)^{7/3}$

$$\tilde{t} = t\sqrt{15\sigma\pi/4\,m_0} \qquad \qquad \tilde{\tau} = k\tau d/4\sigma$$


Анализ потенциала

$$\dot{q}_{out} \equiv \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} \ddot{q} \, d\tilde{t} > |\dot{q}_A|$$



$$\dot{q}_{out} > |\dot{q}_A|$$

2a)
$$\widetilde{U}_0(q_m) + \frac{\dot{q}_A^2}{2} = \widetilde{U}_0(q_s)$$

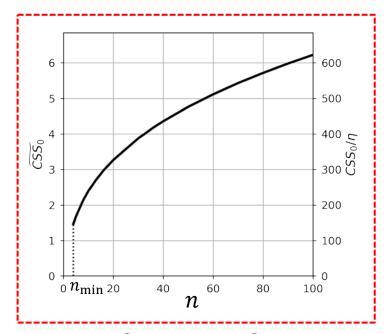
26)
$$|\dot{q}_A| = \sqrt{2\big(\widetilde{U}_0(q_s) - \widetilde{U}_0(q_m)\big)}$$

3a)
$$\dot{q}_{out} \equiv \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} \ddot{q} \, d\tilde{t} = \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} \left(-\tilde{\tau}q^{3/7} + q^{1/7} - 1 \right) d\tilde{t}$$
 36) $|\dot{q}_{out}| = \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} q^{3/7} \tilde{\tau} d\tilde{t} - \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} \left(q^{1/7} - 1 \right) d\tilde{t}$

36)
$$|\dot{q}_{out}| = \int_{\tilde{t}_{in}}^{t_{out}} q^{3/7} \tilde{\tau} d\tilde{t} - \int_{\tilde{t}_{in}}^{t_{out}} (q^{1/7} - 1) d\tilde{t}$$

$$|\dot{q}_A| < \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} q^{3/7} \tilde{\tau} \, d\tilde{t} < q_m^{3/7} \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} \tilde{\tau} d\tilde{t}$$

$$CSS \equiv \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} \tilde{\tau} d\tilde{t} > q_m^{-\frac{3}{7}} \sqrt{2(\tilde{U}_0(q_s) - \tilde{U}_0(q_m))} \equiv CSS_0 \qquad CSS_0 \sim \left(\frac{3}{2}n\right)^{1/3}$$

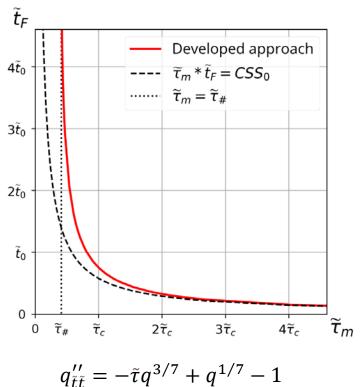


$$\dot{q}_{out} > |\dot{q}_A|$$

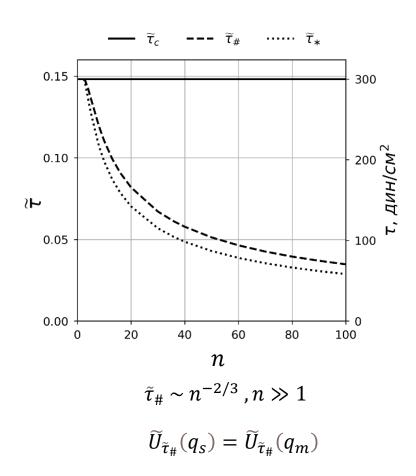
2a)
$$\widetilde{U}_0(q_m) + \frac{\dot{q}_A^2}{2} = \widetilde{U}_0(q_s)$$

26)
$$|\dot{q}_A| = \sqrt{2\big(\widetilde{U}_0(q_s) - \widetilde{U}_0(q_m)\big)}$$

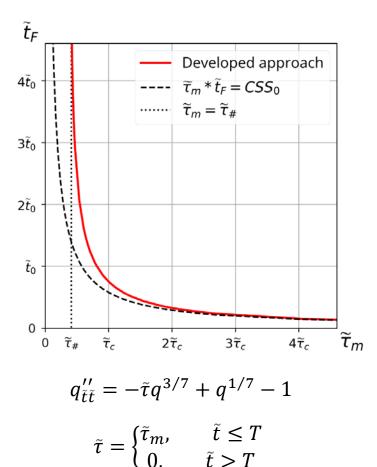
3a)
$$\dot{q}_{out} \equiv \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} \ddot{q} \, d\tilde{t} = \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} \left(-\tilde{\tau}q^{3/7} + q^{1/7} - 1 \right) d\tilde{t}$$
 36) $|\dot{q}_{out}| = \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} q^{3/7} \tilde{\tau} d\tilde{t} - \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} \left(q^{1/7} - 1 \right) d\tilde{t}$


36)
$$|\dot{q}_{out}| = \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} q^{3/7} \tilde{\tau} d\tilde{t} - \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} (q^{1/7} - 1) d\tilde{t}$$

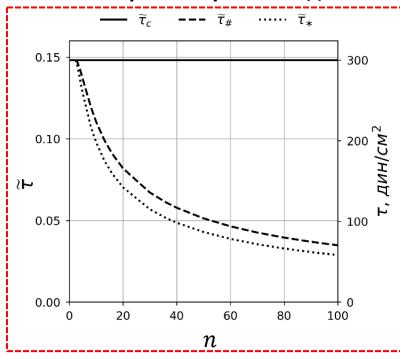
3B)
$$|\dot{q}_A| < \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} q^{3/7} \tilde{\tau} \, d\tilde{t} < q_m^{3/7} \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} \tilde{\tau} d\tilde{t}$$


4)
$$CSS \equiv \int_{\tilde{t}_{in}}^{\tilde{t}_{out}} \tilde{\tau} d\tilde{t} > q_m^{-\frac{3}{7}} \sqrt{2(\tilde{U}_0(q_s) - \tilde{U}_0(q_m))} \equiv CSS_0 \qquad CSS_0 \sim \left(\frac{3}{2}n\right)^{1/3}$$

$$\tilde{\tau} = \begin{cases} \tilde{\tau}_m, & \tilde{t} \leq T \\ 0, & \tilde{t} > T \end{cases}$$



4)


$$\tilde{\tau} > \tilde{\tau}_{\#} \sim n^{-2/3}$$

Только при патофизиол. сдвигах

$$ilde{ au}_{\#} \sim n^{-2/3}$$
 , $n \gg 1$

$$\widetilde{U}_{\widetilde{\tau}_{\#}}(q_s) = \widetilde{U}_{\widetilde{\tau}_{\#}}(q_m)$$

$$\tilde{\tau} > \tilde{\tau}_{\#} \sim n^{-2/3}$$

Расчет поля скоростей $\overrightarrow{V}(x,y,z,t)$:

$$\frac{\partial \vec{V}}{\partial t} + (\vec{V}, \nabla)\vec{V} = -\frac{1}{\rho}\nabla p + \nu\nabla^2 \vec{V}$$
 (1)

$$\left(\nabla, \vec{V}\right) = 0 \tag{2}$$

 ∇ — оператор набла, ρ — плотность, ν — кинематическая вязкость viscosity.

Граничные условия

Вход: нестационарная зависимость объемного потока от времени

Выход: фиксированное статическое давление, стенка – отсутствие проскальзывания

Расчет поля CSS(x, y, z, t):

$$\frac{\partial CSS}{\partial t} + (\vec{V}, \nabla)CSS = \tau \,\theta(\tau - \tau_{\#}) \tag{3}$$

$$\tau = \mu \dot{\gamma} = \mu \sqrt{2trD^2} \tag{4}$$

$$\tau_{\#} \sim n^{-\frac{2}{3}}, n \gg 1$$
 (5)

 μ — динамическая вязкость; $D(\vec{V})$ — тензор скоростей деформации; au — напряжение сдвига; n — мультимерность VWF; $\theta(au)$ — функция Хевисайда

Граничные условия

Выход: фикс. значение (0); Выход: свободное гран условие; стенка – условие непроницаемости

Оценка числа праймированных тромбоцитов $P_a(x, y, z, t)$:

$$\frac{\partial P}{\partial t} + (\vec{V}, \nabla)P = -kP \,\theta(CSS - CSS_0) \tag{6}$$

$$P_a = P_0 - P \tag{7}$$

$$CSS_0 \sim n^{\frac{1}{3}}, n \gg 1 \tag{8}$$

P — концентрация неактивированных тромбоцитов; P_0 — начальная концентрация; CSS_0 — пороговая величина

Boundary conditions

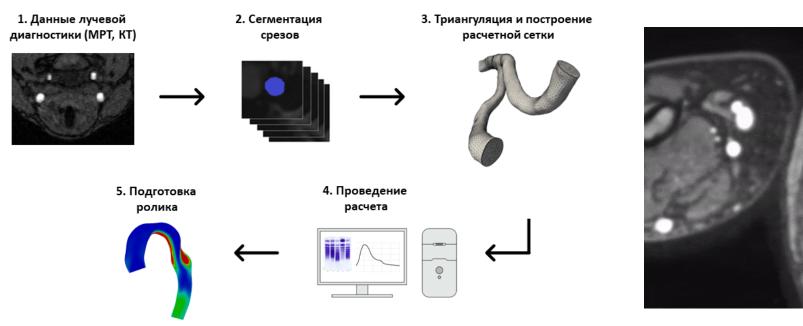
Вход: фикс. значение (P_0) ; Выход: свободное гран. условие; стенка — условие непроницаемости

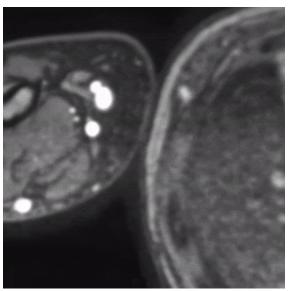
Оценка уровня активации (PAL):

$$PAL = \frac{1}{\Delta t} \left(\int_{t_0}^{t_0 + \Delta t} \frac{J_a}{J} dt \right) \cdot 100\%$$
 (9)

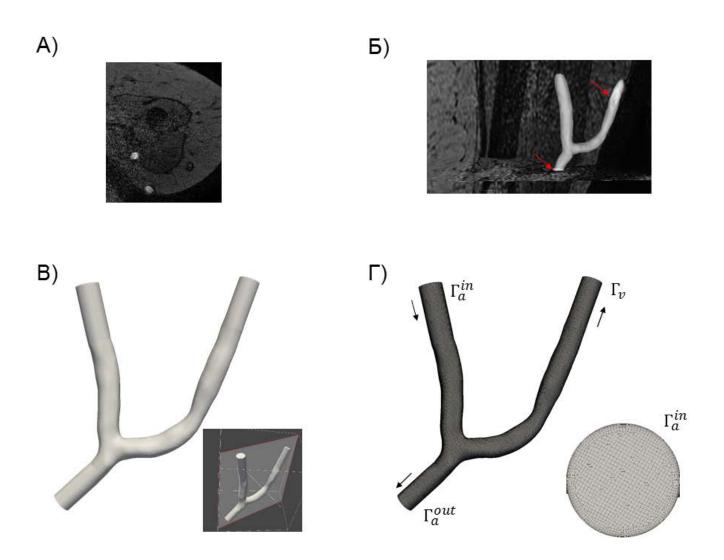
$$J_{a} = \oint_{\Gamma_{out}} P_{a} \vec{V} \cdot \vec{dS} \qquad \qquad J = \oint_{\Gamma_{out}} P_{0} \vec{V} \cdot \vec{dS}$$
 (10)

 $\Delta t = m \Delta t_0$, Δt_0 — длительность сердечного цикла, m — число циклов


Интерпретация

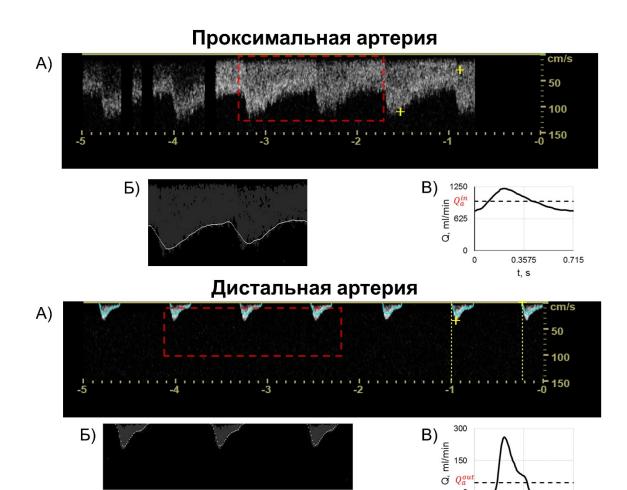

 $PAL = \langle P_a \rangle / P_0 \cdot 100\%$, $\langle P_a \rangle$ — процент праймированных тромбоцитов в их потоке на выходе из геометрии в среднем за цикл

Анализ гидродинамической активации в крупных сосудах человека


Основные шаги

Пример реконструкции

Крупные сосуды конкретного пациента



Методология: поиск порогового объемного кровотока

0.3575

t. s

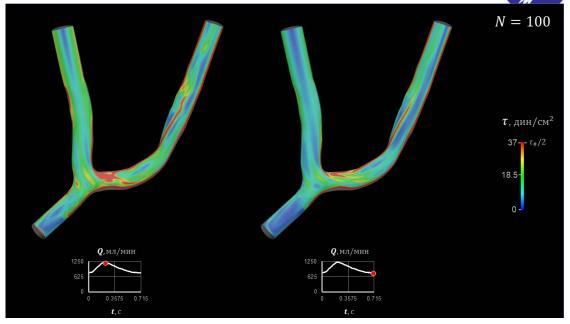
0.715

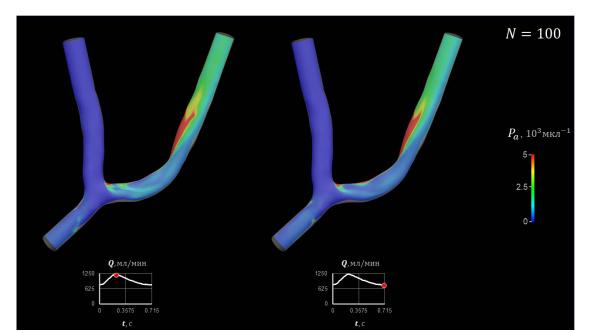
Мультимерность

N менялась от 4 to 100.

N < 10: мелкие мультимеры (менее активные)

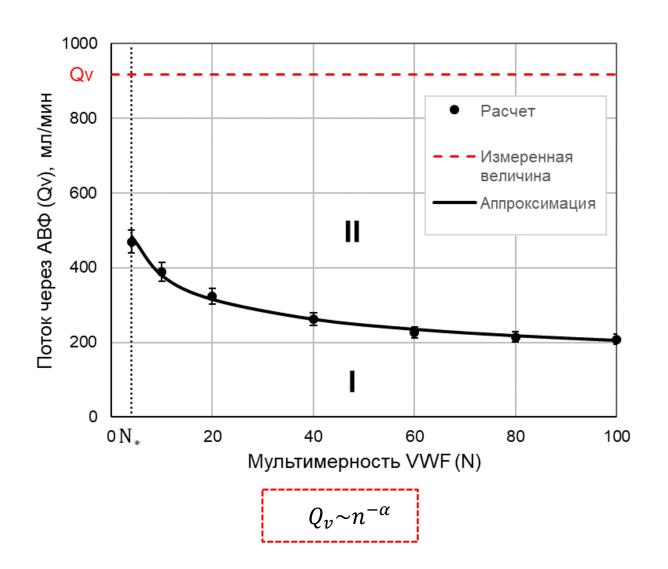
N > 40: ультракрупные мультимеры (наиболее активные)


Stockschlaeder et al. // Blood Coagul Fibrinolysis. 2014;25(3);206-16.


eta ~ 3 cP

N N M

Результаты расчета при измеренной величине объемного потока



Подход позволяет оценивать тромбогенность гемодинамического режима в терминах уровня активации тромбоцитов

Параметрическая диаграмма активации

Благодарности

Работа была поддержана Российским научным фондом (грант №19-11-00260).

Работа была выполнена с использованием оборудования центра коллективного пользования «Комплекс моделирования и обработки данных исследовательских установок мега-класса» НИЦ «Курчатовский институт» (субсидия Минобрнауки, идентификатор работ RFMEFI62117X0016), http://ckp.nrcki.ru/.

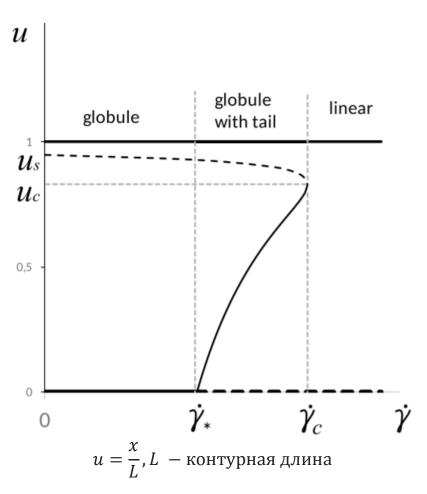
Коллектив

Tatiana Y. Salikhova

Denis M. Pushin

Georgy Th. Guria

Спасибо за внимание!



Бифуркационная диаграмма

$$\dot{\gamma}_c \sim 10000 \, s^{-1}$$

$$\dot{\gamma}_* \sim n^{-2/3}$$
 , $n \gg 1$

Zlobina K. E., Guria G. T. (2016). Platelet activation risk index as a prognostic thrombosis indicator. Sci Rep., 6, 30508.

Степенные закономерности в "капельных" моделях

A) Globule-stretched transition: $\dot{\gamma}_1 \sim n^{-2/3}$, $n \gg 1$; простой сдвиговый поток

Buguin & Brochard-Wyart // Macromolecules. 1996:29(14);4937-4943

Б) Критические параметры в

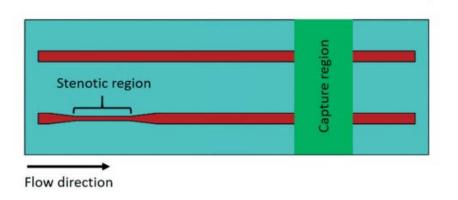
"капельной" модели VWF:
$$au_* \sim n^{-2/3}$$
 , $n\gg 1$; $au_\# \sim n^{-2/3}$, $n\gg 1$; $au SS_0 \sim n^{1/3}$, $n\gg 1$

$$R = dn^{1/3}$$
 n – мультимерность VWF $Q_{cr} \sim n^{-\alpha}$

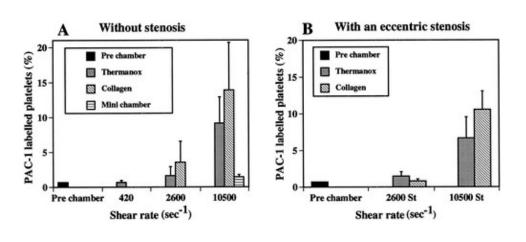
Влияние профиля течения

Влияние профиля течения в аорте существенно на расстоянии 2-3 диаметров от входного сечения

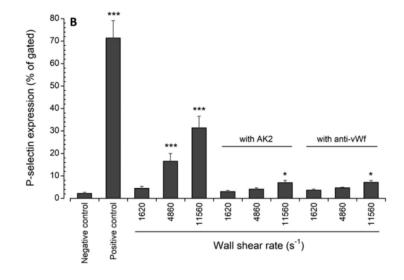
Madhavan S., Kemmerling E. M. C. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow //Biomedical engineering online. – 2018. – Vol. 17. – no. 1. – Pp. 1-20.


Вид профиля течения в исследованиях гемодинамики сонных артерий оказывает **меньшее** влияние, чем вариации геометрии или вид временной зависимости. Использование профиля Пуазейля приводит к значениям WSS, схожим со случаем patient-specific профиля

Campbell I.C. et al. Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation //J Biomech Eng. – 2012. – Vol. 135. – no. 5. – Pp. 0510011–0510018.

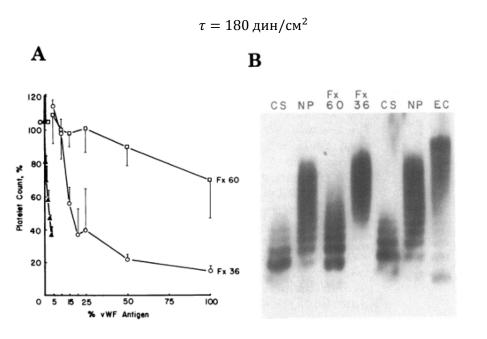


Активация тромбоцитов (цельная кровь): нестационарные сдвиговые напряжения

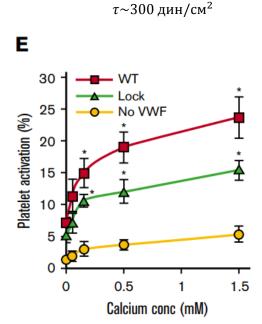


Rahman et al. // Lab Chip. 2021:21(1);174-83

Negative control (% of gated)



Holme et al. // Arterio. Thromb. Vasc. Biol. 1997:17;646-53



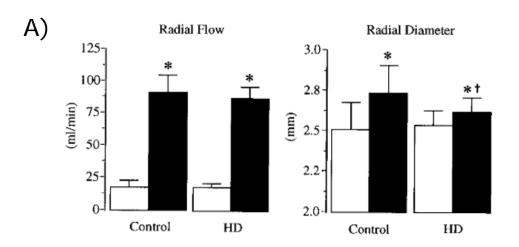
Активация тромбоцитов: pasмep VWF

Moake et al. // J Clin Invest. 1986: 78(6); 1456-61

Zhang et al. // Blood Adv. 2019: 3(7); 957-68

Отдельные A1 домены связываются с GPIb рецепторами даже в условиях стаза, но не вызывают активации тромбоцитов даже при напряжения сдвига около 300 дин/см²

Shankaran et al. // Blood. 2003:101(7);2637-2645


Растяжимость сосудов фистулы

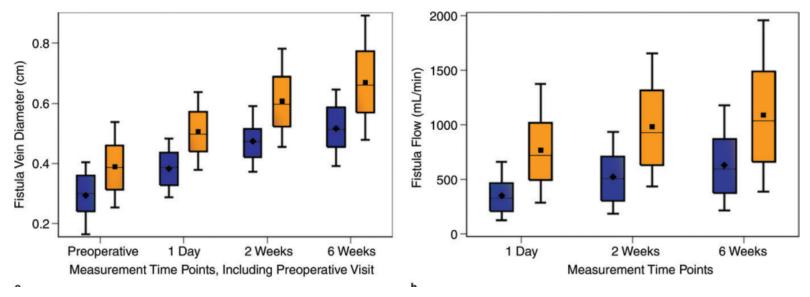
FSI подход

Ошибка в расчете напряжения сдвига 20-50 %

Decorato et al. // Int J Numer Method Biomed Eng. 2014:30(2);143-59; McGah et al. // Biomech Model Mechanobiol. 2014:13(3);679-95.

In vivo data (flow-mediated vasodilation)

В) Диаметр артерии меняется не более чем на 7 %


Verbeke et al. // Clin J Am Soc Neph. 2011:6(8);2009-15

Joannides et al. // Neph Dial Tranplant. 1997: 12(12); 2623-28

Созревание сосудов АВФ

Robbin et al. // Radiology. 2016:279(2);620-629

Оценки

Число VWF на тромбоцитах

$$\frac{N_{occupied}}{N_{GPIb}} = \frac{[A_1]}{K_d}$$

$$K_d \sim 5$$
 мк M ; $[A_1] = \frac{10 \frac{\text{мкг}}{\text{мл}}}{250 \text{ кДа}} = 40 \text{нМ}; \text{N}_{\text{GPIb}} \sim 28000$

$$\frac{N_{occupied}}{N_{GPIb}} \sim 1 \%$$

Shim et al. // Blood. 2008:111(2);651-657

Связывание размотанного VWF с GPIb рецепторами

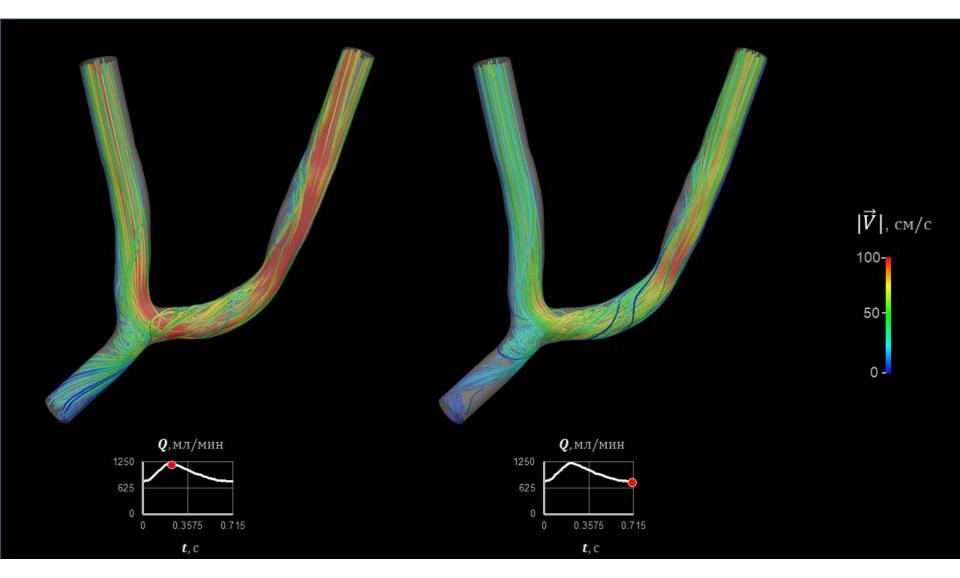
$$S_p = 28 \, {
m mkm}^2$$
; $N_{GPIb} = 28000$, $ho{\sim}1000 \, {
m штук/mkm}^2$

Расстояние между GPIb: $d_{GPIb} \sim \sqrt{\frac{28 \text{ мкм}^2}{28000}} \sim 30 \text{ нм}$

Площадь мономера: $S_{\text{мономер}} \sim (d_{VWF})^2 \sim (50 \text{ hm})^2 \sim 0.0025 \text{ мкм}^2$

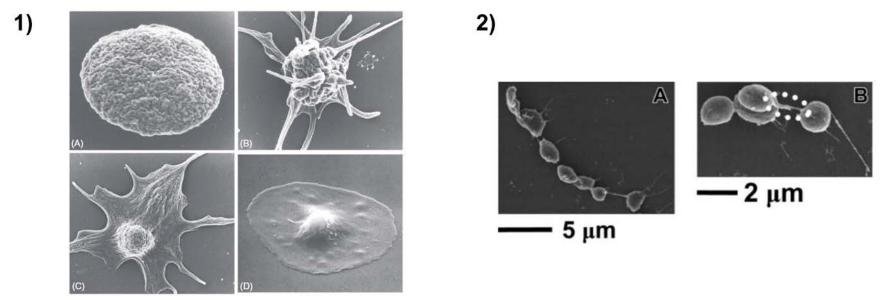
Число рецепторов на площади одной субъединицы: N_S~1000 * 0.0025~3 штуки

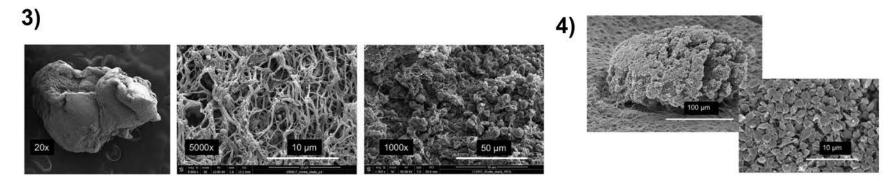
Время диффузии на расстояние d_{GPIb} : $t \sim \frac{\pi \eta d_{VWF} d_{GPIb}^2}{kT} \sim \frac{3*3 \text{с}\Pi_{3}* \left(50\ 10^{-7} \text{см}\right)* \left(30\ 10^{-7} \text{см}\right)^2}{\frac{10^{-16} \text{эрг}}{K}*300K} \sim 0.2 \text{мс}$ Wellings & Ku // Cardiovasc Eng Tech. 2012:3(2);161-170


Время образования связи: $10^{-6}c$

Casa & Ku // Ann Rev Fluid Mech 2017:19;415-433

Трубки тока





Тромбоциты: активация и агрегация

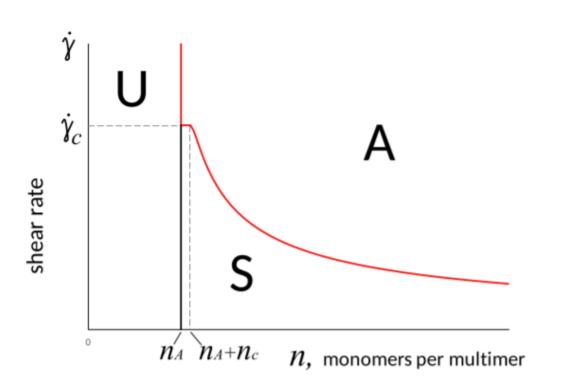

- 1) Изменение формы при активации биохимическими агонистами
- 2) Обратимая агрегация, опосредованная гликопротеином VWF ($\dot{\gamma} > 10000 \frac{1}{r}$)
- 3) Тромб, вызвавший инсульт (человек)
- 4) Гемостатический тромб в яремной вене (мышь)

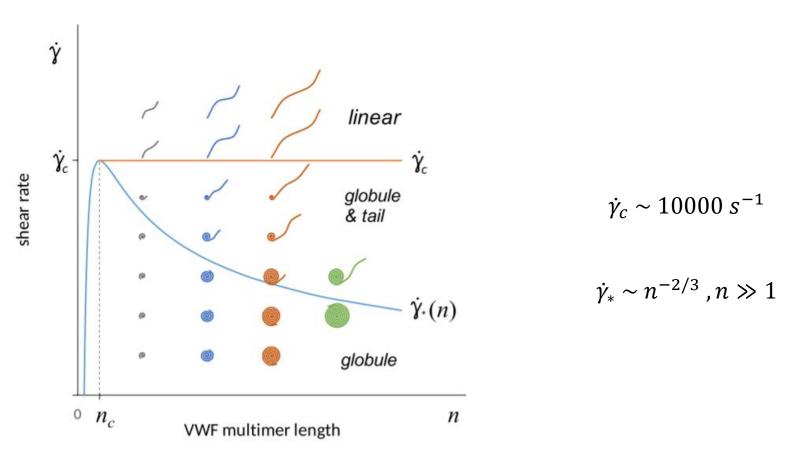
Диаграмма активации тромбоцитов

Квазистатика

U – отсутствие активацииA – закритические состояния

S – докритические состояния

$$PARI \sim \frac{\tau}{\tau_C} (n - n_a)^{-\frac{2}{3}} > 1$$


 n_a – размер "аккорда"

Zlobina K. E., Guria G. T. (2016). Platelet activation risk index as a prognostic thrombosis indicator. Sci Rep., 6, 30508.

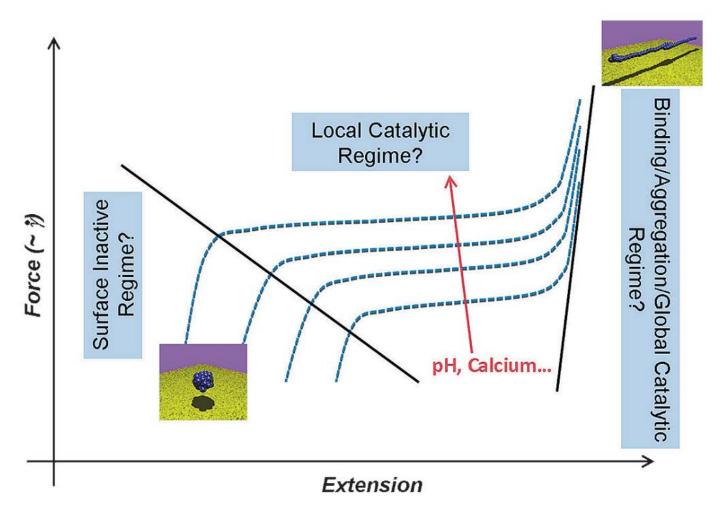
Параметрическая диаграмма «сворачивания-разворачивания» VWF

Zlobina K. E., Guria G. T. (2016). Platelet activation risk index as a prognostic thrombosis indicator. Sci Rep., 6, 30508.

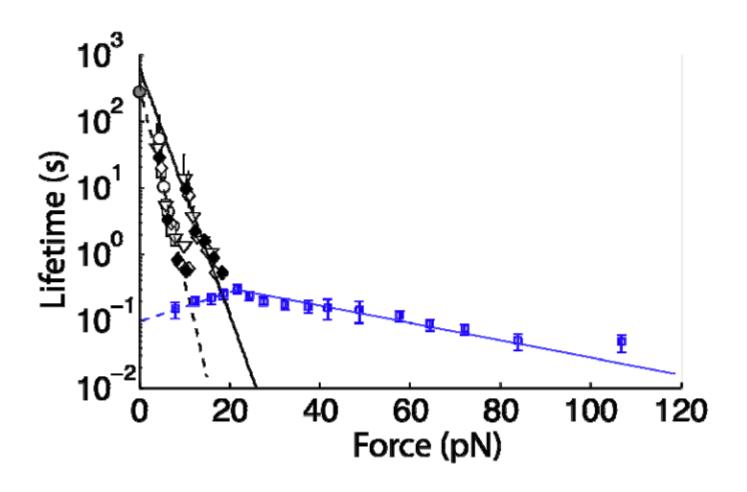
Построение параметрической диаграммы состояний VWF

Группа SCHENC

Huck V. et al. (2014). The various states of von Willebrand factor and their function in physiology and pathophysiology. *Thrombosis and Haemostasis*, 111(4):598-609.


Группа Г. Т. Гурия

Zlobina K. E., Guria G. T. (2016). Platelet activation risk index as a prognostic thrombosis indicator. *Scientific reports*, *6*, 30508.


Построение параметрической диаграммы состояний VWF

Тип связи GPIb-A1: catch or slip

Kim et al. // Nature. 2010:466(7309);992-995

Учет фрактальной размерности D

$$r \sim \sqrt[d]{L - x}$$
; $S \sim r^{D-1}$

$$ilde{\gamma}_* \sim rac{\xi^{1/D} - 1}{\xi}$$

$$\tilde{\gamma}_c \sim \frac{(D-1)^{D-1}}{D^D}$$

$$PARI \sim (\xi - \xi_a)^{-(D-1)/D}$$

$$CSS \sim N^{1/D}$$

Численные методы

Расчетная сетка

Неструктурированная гексаэдрическая сетка с призматическими погран слоями (CF-MESH+)

Детали дискретизации (FVM, OpenFOAM)

Конвективный член: Minmod (Navier-Stokes), upwind (прочие уравнения).

Нестационарный член: схема Кранка-Николсона с адаптивным шагом по времени (Co < 1, Co — Courant number)

Диффузионный член: схема центральных разностей с расчетом градиента с помощью метода наименьших квадратов