Численные методы для расчета течения жидкости и тромбообразования в подвижных областях

<u>Кирилл Терехов^{1,2,4}, Иван Бутаков², Александр Данилов^{1,2,3,4}, Юрий Василевский^{1,2,3,4}</u>

¹ИВМ РАН, ²МФТИ, ³Сеченовский Университет, ⁴Университет Сириус

Рабочая группа по математическим моделям и численным методам в биологии и медицине

ВІОМАТН 2023, 3 ноября

Прогресс в этом году

- Поиск математической модели тромбообразования:
 - (Иван Бутаков, студент МФТИ, доклад)
- Сегментация и сетки ушка предсердия:
 - (Валерия Гаева, студентка МФТИ)
- Блочные многосеточные методы для совместной схемы Навье-Стокс-коагуляция.
- Проекционная схема:
 - Маленький шаг, но проще работать с реакциями;
 - Решение системы Био в стенках и тромбе.
- Доклад далее по результатам прошлого года

Задача

система и нюансы

Модель свертываемости

- Сопряжение моделей:
 - Гемодинамическая модель учитывает проницаемость фибрин-полимера.
 - Модель **биохимических реакций** свертываемости плазмы крови:
 - Из-за повреждения (тканевой фактор);
 - Из-за сдвиговой скорости (фактор фон Виллебранда).
 - Модель тромбоцитов.
- Каскад реакций и модель тромбоцитов являются жесткими.
- Полностью неявная интеграция модели.

lacksquare

Тромбин (IIa):

Фибриноген

Система течения и свертывания крови

Система уравнений Навье-Стокса: ${\color{black}\bullet}$

$$\begin{split} \frac{\partial \rho \mathbf{u}}{\partial t} + \operatorname{div}(\rho \mathbf{u} \mathbf{u}^T - \tau + p \mathbb{I}) &= -\frac{\mu}{K_f} \mathbf{u}, \\ \operatorname{div}(\rho \mathbf{u}) &= 0, \\ \tau &= 2\mu\epsilon, \quad \epsilon = \frac{1}{2} (\mathbf{u} \nabla^T + \nabla \mathbf{u}^T), \quad \dot{\gamma} = ||\epsilon||_F, \end{split}$$
Протромбин (II):
$$\begin{aligned} \frac{\partial P}{\partial t} + \operatorname{div}(P\mathbf{u} - D\nabla P) &= -(k_1\phi_c + k_2B_a + t(T))P, \\ \frac{\partial T}{\partial t} + \operatorname{div}(T\mathbf{u} - D\nabla T) &= (k_1\phi_c + k_2B_a + t(T))P - k_6g(A, T), \end{aligned}$$
Факторы свертывания (IXa, Xa):
$$\begin{aligned} \frac{\partial B_a}{\partial t} + \operatorname{div}(B_a\mathbf{u} - D\nabla B_a) &= (k_7\phi_c + k_8T)(B_0 - B_a) - k_9AB_a, \\ \text{Антитромбин (ATIII):} & \frac{\partial A}{\partial t} + \operatorname{div}(A\mathbf{u} - D\nabla F_g) &= -k_6g(A, T) - k_9AB_a, \end{aligned}$$
Фибриноген (I):
$$\begin{aligned} \frac{\partial F_g}{\partial t} + \operatorname{div}(F_g\mathbf{u} - D\nabla F_g) &= -\frac{k_{10}TF_g}{K_{10}+F_g}, \end{aligned}$$
Продолжается далее...

Система течения и свертывания крови

• Система уравнений Навье-Стокса:

Седловая система

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \operatorname{div}(\rho \mathbf{u} \mathbf{u}^{T} - \boldsymbol{\tau} + p\mathbb{I}) = -\frac{\mu}{K_{f}} \mathbf{u},$$
$$\operatorname{div}(\rho \mathbf{u}) = 0,$$
$$\Pi \text{роницаемость тромба}$$
$$\boldsymbol{\tau} = 2\mu\boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} = \frac{1}{2}(\mathbf{u}\nabla^{T} + \nabla \mathbf{u}^{T}), \quad \dot{\boldsymbol{\gamma}} = ||\boldsymbol{\epsilon}||_{F},$$

$$\frac{\partial P}{\partial t} + \operatorname{div}(P\mathbf{u} - D\nabla P) = -(k_1\phi_c + k_2B_a + t(T))P,$$

- Тромбин (IIa): $\frac{\partial T}{\partial t} + \operatorname{div}(T\mathbf{u} D\nabla T) = (k_1\phi_c + k_2B_a + t(T))P k_6g(A,T),$
- Факторы свертывания (IXa, Xa): $\frac{\partial B_a}{\partial t} + \operatorname{div}(B_a \mathbf{u} D \nabla B_a) = (k_7 \phi_c + k_8 T)(B_0 B_a) k_9 A B_a$,

$$\frac{\partial A}{\partial t} + \operatorname{div}(A\mathbf{u} - D\nabla A) = -k_6 g(A, T) - k_9 A B_a$$

 $\frac{\partial F_g}{\partial t} + \operatorname{div}(F_g \mathbf{u} - D\nabla F_g) = -\frac{k_{10}TF_g}{K_{10} + F_g},$

• Фибриноген (I):

Антитромбин (ATIII):

Продолжается далее...

Система течения и свертывания крови

• Фибрин (la):

$$\frac{\partial F}{\partial t} + \operatorname{div}(F\mathbf{u} - D\nabla F) = \frac{k_{10}TF_g}{K_{10} + F_g} - k_{11}F,$$

- Фибрин-полимер:
- Неактивные тромбоциты:
- Активированные тромбоциты:

$$\frac{1}{\partial t} = k_{11}F,$$

$$\frac{\partial \phi_f}{\partial t} + \operatorname{div}\left(k(\phi_c, \phi_f)(\phi_f \mathbf{u} - D_p \nabla \phi_f)\right) = (k_{12}T - k_{13}\phi_c - K\gamma^n)\phi_f,$$

$$\frac{\partial \phi_c}{\partial t} + \operatorname{div}\left(k(\phi_c, \phi_f)(\phi_c \mathbf{u} - D_p \nabla \phi_c)\right) = -(k_{12}T - k_{13}\phi_c - K\gamma^n)\phi_f,$$

• Мобильность тромбоцитов:
$$k(\phi_c, \phi_f) = \tanh\left(\pi\left(1 - \frac{\phi_c + \phi_f}{\phi_{max}}\right)\right)$$
,

- Антикоагулянт: $g(A,T) = \frac{ATH}{\alpha k_{AT}k_T + \alpha k_{AT}T + \alpha k_TA + AT}$, Генерация тромбина: $t(T) = k_3T + k_4T^2 + k_5T^3$.
- Проницаемость: $\frac{1}{K_f} = \frac{16}{\alpha^2} \phi_p^{\frac{3}{2}} (1 + 56\phi_p) \frac{\phi_{max} + \phi_c}{\phi_{max} \phi_c}, \quad \phi_p = \min\left(\frac{7}{10}, \frac{F_p}{7000}\right)$

 ∂F_n

Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., & Volpert, V.: A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PloS one, 15(7), e0235392, 2020

Система течения и свертывания крови

Граничные условия

- ГУ на поврежденном эндотелии: $\frac{\partial B_a}{\partial \mathbf{n}} = \frac{\alpha (B^0 - B_\alpha)}{1 + \beta (B^0 - B_\alpha)}$
- ГУ для жидкости:
 - Нет проскальзывания на границах
 - Заданное давление на втоке и вытоке
- ГУ типа Дирихле на втоке и Неймана на остальных стенках для компонент крови.
- Параметры модели:
 - из литературы (Griffith, Goodman, Hokin et al, Kuharsky, Leiderman, Fogelson, Wiebe et al, Tsian et al, ...),
 - из 0-мерной модели генерации тромбина, подобраны.

Численные методы

методы конечных объемов на подвижных сетках интегрирование систем реакций

Система уравнений Навье-Стокса

• Система уравнений Навье-Стокса:

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \operatorname{div} (\rho \mathbf{u} \mathbf{u}^T - \mu (\mathbf{u} \nabla^T + \nabla \mathbf{u}^T)) + \nabla p = \boldsymbol{g},$$
$$\operatorname{div} (\rho \mathbf{u}) = 0.$$

• Формулировка в терминах четыре-градиента:

$$\begin{pmatrix} \rho \mathbf{u} \mathbf{u}^T - \mu (\mathbf{u} \nabla^T + \nabla \mathbf{u}^T) + p \mathbb{I} & \rho \mathbf{u} \\ \rho \mathbf{u}^T & \end{pmatrix} \begin{pmatrix} \nabla \\ \partial_t \end{pmatrix} = \begin{pmatrix} \boldsymbol{g} \\ 0 \end{pmatrix},$$

• Формула Остроградского-Гаусса для интеграла:

$$\oint \begin{pmatrix} \rho \mathbf{u} \mathbf{u}^T - \mu (\mathbf{u} \nabla^T + \nabla \mathbf{u}^T) + p \mathbb{I} & \rho \mathbf{u} \\ \rho \mathbf{u}^T & \end{pmatrix} \begin{pmatrix} \mathbf{n} \\ n_t \end{pmatrix} dS = \int \begin{pmatrix} \mathbf{g} \\ 0 \end{pmatrix} dV,$$

• Дискретизация по граням:

$$\sum_{f} |f(t)|\mathbf{t} = |V(t)| \begin{bmatrix} \mathbf{g} \\ 0 \end{bmatrix}, \quad \mathbf{t} = \begin{pmatrix} \rho \mathbf{u} (\mathbf{u}^T \mathbf{n} + n_t) - \mu (\mathbf{u} \nabla^T + \nabla \mathbf{u}^T) \mathbf{n} + \rho \mathbf{n} \\ \rho \mathbf{u}^T \mathbf{n} \end{pmatrix},$$

• Требуется аппроксимация потока *t* на гранях.

u,p

Аппроксимация потока

• Аппроксимация потока t на грани из ячейки с помощью разложения Тейлора:

$$\boldsymbol{t} \approx \begin{bmatrix} \left(a_{1} + \frac{\mu}{r_{1}}\right)(\mathbb{I} + \mathbf{n}\mathbf{n}^{T}) - \frac{\rho}{2}(\mathbf{n}^{T}\mathbf{u}_{1}\mathbb{I} + \mathbf{u}_{1}\mathbf{n}^{T}) \\ b_{1} \end{bmatrix} \begin{bmatrix} u_{1} \\ p_{1} \end{bmatrix} - \begin{bmatrix} \left(a_{1} + \frac{\mu}{r_{1}}\right)(\mathbb{I} + \mathbf{n}\mathbf{n}^{T}) - \rho(\mathbf{n}^{T}\mathbf{u}_{1}\mathbb{I} + \mathbf{u}_{1}\mathbf{n}^{T}) - \rho n_{t}\mathbb{I} & -\mathbf{n} \\ -\rho \mathbf{n} & b_{1} \end{bmatrix} \begin{bmatrix} u_{f} \\ p_{f} \end{bmatrix} \\ + \left(\begin{bmatrix} \left(a_{1} + \frac{\mu}{r_{1}}\right)(\mathbb{I} + \mathbf{n}\mathbf{n}^{T}) \\ b_{1} \end{bmatrix} \otimes (\mathbf{x}_{f} - \mathbf{x}_{1}) - \begin{bmatrix} \mu\mathbb{I} & 0 \end{bmatrix} \otimes [\mathbf{n}^{T} & 0] - [\mathbf{n}^{T} & 0] \otimes \begin{bmatrix} \mu\mathbb{I} & 0 \end{bmatrix} \right) \begin{bmatrix} u_{1} \\ p_{1} \end{bmatrix} \otimes \nabla,$$

- где a_1, b_1 параметры *стабилизации* конвективной и седловой неустойчивостей.
- Из аналогичной аппроксимации со стороны соседней ячейки или из граничных условий получим *неизвестную* на грани и *выражение на поток*.

- Расчет градиентов методом наименьших квадратов.
- Метод первого порядка дискретизации по времени (аналог обратного метода Эйлера)

Адвекция-диффузия компонент крови

• Система уравнений **переноса-диффузии**:

$$\frac{\partial \mathbf{c}}{\partial t} + \operatorname{div}(\mathbf{u}\mathbf{c} - D\nabla \mathbf{c}) = r, \rightarrow (\mathbf{u}^T \mathbf{c} - D\nabla \mathbf{c} \quad c) \begin{pmatrix} \nabla \\ \partial_t \end{pmatrix} = r, \rightarrow \oint (\mathbf{u}^T \mathbf{c} - D\nabla \mathbf{c}^T \quad c) \begin{pmatrix} \mathbf{n} \\ n_t \end{pmatrix} \mathrm{d}S = \int r \, \mathrm{d}V, \ \rightarrow \sum_f |f(t)|q = |V(t)|r,$$
$$q = c(\mathbf{n}^T \mathbf{u} + n_t) - D\mathbf{n}^T \nabla c.$$

• Нелинейный перенос-диффузия для тромбоцитов:

$$\frac{\partial}{\partial t} \begin{bmatrix} \phi_f \\ \phi_c \end{bmatrix} + \operatorname{div} \left(k(\phi_c, \phi_f) \begin{bmatrix} \mathbf{u}^T \phi_f - D_p \nabla \phi_f^T \\ \mathbf{u}^T \phi_c - D_p \nabla \phi_c^T \end{bmatrix} \right) = \begin{bmatrix} r_{\phi_f} \\ r_{\phi_c} \end{bmatrix}, \rightarrow \left(k(\phi_c, \phi_f) \begin{bmatrix} \mathbf{u}^T \phi_f - D_p \nabla \phi_f^T \\ \mathbf{u}^T \phi_c - D_p \nabla \phi_c^T \end{bmatrix} \begin{bmatrix} \phi_f \\ \phi_c \end{bmatrix} \right), \rightarrow \left(k(\phi_c, \phi_f) \begin{bmatrix} \mathbf{u}^T \phi_f - D_p \nabla \phi_f^T \\ \mathbf{u}^T \phi_c - D_p \nabla \phi_c^T \end{bmatrix} \begin{bmatrix} \phi_f \\ \phi_c \end{bmatrix} \right) \begin{pmatrix} \mathbf{n} \\ n_t \end{pmatrix} dS = \int \begin{bmatrix} r_{\phi_f} \\ r_{\phi_c} \end{bmatrix} dV, \rightarrow \sum_f |f(t)| q_p = |V(t)| \begin{bmatrix} r_{\phi_f} \\ r_{\phi_c} \end{bmatrix},$$
$$\boldsymbol{q}_p = \left(k(\phi_c, \phi_f) \mathbf{n}^T \mathbf{u} + n_t \right) \begin{bmatrix} \phi_f \\ \phi_c \end{bmatrix} - k(\phi_c, \phi_f) D_p \begin{bmatrix} \mathbf{n}^T \nabla \phi_f \\ \mathbf{n}^T \nabla \phi_c \end{bmatrix}.$$

 Требуется аппроксимация потоков q и q_p на гранях. Нелинейный поток аппроксимируется с помощью метода Тейлора. В обоих случаях применяется стабилизация.

Terekhov K., Butakov I., Danilov A., Vassilevski Yu.: **Dynamic adaptive moving mesh finite-volume method for the blood flow and coagulation modeling.** Numerical methods in biomedical engineering. **Submitted.**

Аппроксимация каскада реакций

• Система уравнений переноса-диффузии:

$$\frac{\partial \mathbf{x}}{\partial t} = \mathbf{r}, \rightarrow |V^{n+1}| \mathbf{x}^{n+1} - |V^n| \mathbf{x}^n = |V(t)| (\mathbf{W}\mathbf{r}^{n+1} + (\mathbb{I} - \mathbf{W})\mathbf{r}^n),$$

• где W – матричный коэффициент, фильтрующий спектр якобиана $J = \frac{\partial r^{n+1}}{\partial \mathbf{x}^T}$, и воспроизводящий экспоненциальный интегратор:

Доклад Ивана Бутакова

I.. Butakov and K. Terekhov **Two Methods for the Implicit Integration of Stiff Reaction Systems.** Computational Methods in Applied Mathematics, 2022

Публикации по методам

- K. Terekhov, B. Mallison, and H. Tchelepi. Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem. Journal of Computational Physics, 2017.
- K. Terekhov, and Yu. Vassilevski. Finite volume method for coupled subsurface flow problems, I: Darcy problem. Journal of Computational Physics, 2019
- K. Terekhov, and H. Tchelepi. Cell-centered finite-volume method for elastic deformation of heterogeneous media with full-tensor properties. Journal of Computational and Applied Mathematics, 2020
- K. Terekhov. Cell-centered finite-volume method for heterogeneous anisotropic poromechanics problem. Journal of Computational and Applied Mathematics, 2020
- K. Terekhov. Collocated Finite-Volume Method for the Incompressible Navier-Stokes Problem, Journal of Numerical Mathematics, 2020
- Yu. Vassilevski, K. Terekhov, K. Nikitin, I. Kapyrin. Parallel finite volume computation on general meshes, Springer Book, 2020
- K. Terekhov. Multi-physics flux coupling for hydraulic fracturing modelling within INMOST platform. Russian Journal of Numerical Analysis and Mathematical Modelling, 2020
- K. Terekhov. Fully-Implicit Collocated Finite-Volume Method for the Unsteady Incompressible Navier-Stokes Problem, Lecture Notes in Computational Science and Engineering, 2021
- K. Terekhov. General finite-volume framework for saddle-point problems of various physics. Russian Journal of Numerical Analysis and Mathematical Modelling, 2021
- K. Terekhov, and Yu. Vassilevski. Finite volume method for coupled subsurface flow problems, II: Poroelasticity. Journal of Computational Physics, 2022
- K. Terekhov **Presure boundary conditions in the collocated finite-volume method for the steady Navier–Stokes equations.** Computational Mathematics and Mathematical Physics, 2022
- I.. Butakov and K. Terekhov Two Methods for the Implicit Integration of Stiff Reaction Systems. Computational Methods in Applied Mathematics, 2022
- K. Terekhov, I. Butakov, A. Danilov, Yu. Vassilevski **Dynamic adaptive moving mesh finite-volume method for the blood flow and coagulation modeling.** International Journal for Numerical Methods in Biomedical Engineering, 2023

Расчеты течения крови

уравнения Навье-Стокса

Верификация: течение Эшера-Стейнмана

Аналитическое решение. Диаметр сферы – 1 мм, Скорость движения центра сферы – **w**, Плотность крови – 0.00106 г*мм⁻³, Вязкость крови – 0.0035 г*мм^{-1*}с⁻¹

На подвижной сетке

$\Omega(t)$	Δt	$ \Omega(t) $	static, $\mathbf{w} = 0 \ [mm \cdot s^{-1}]$		moving, $\mathbf{w} = 1 [mm \cdot s^{-1}]$,
			$ \mathbf{u}_h - \mathbf{u} _{L_2}$	$ p_h - p _{L_2}$	$ \mathbf{u}_h - \mathbf{u} _{L_2}$	$ p_h - p _{L_2}$	- /
Ω_1	1/50	249	$3.96 \cdot 10^{-3}$	$2.16 \cdot 10^{-1}$	$4.84 \cdot 10^{-3}$	$2.07 \cdot 10^{-1}$	_ /
Ω_2	1/100	1343	$1.22 \cdot 10^{-3}$	$9.34 \cdot 10^{-2}$	$1.49 \cdot 10^{-3}$	$8.89 \cdot 10^{-2}$	/
Ω_3	1/200	9748	$3.00 \cdot 10^{-4}$	$3.76 \cdot 10^{-2}$	$3.61 \cdot 10^{-4}$	$3.49 \cdot 10^{-2}$	
Ω_4	1/400	67405	$8.51 \cdot 10^{-5}$	$1.67 \cdot 10^{-2}$	$9.94 \cdot 10^{-5}$	$1.53 \cdot 10^{-2}$	
rate		1.82	1.17	1.86	1.19	-	
O(t)	Δt	$ \Omega(t) $	static, $\mathbf{w} = 0 [mm \cdot s^{-1}]$		moving, $\mathbf{w} = 1 [mm \cdot s^{-1}]$		
S2(l)			$\ \mathbf{u}_h - \mathbf{u}\ _{L_2}$	$ p_h - p _{L_2}$	$ \mathbf{u}_h - \mathbf{u} _{L_2}$	$ p_h - p _{L_2}$	-
Ω_1^a	1/50	1866	$1.36 \cdot 10^{-3}$	$1.27 \cdot 10^{-1}$	$1.64 \cdot 10^{-3}$	$9.93 \cdot 10^{-2}$	
$\Omega^{\dot{a}}$	1/100	8168	$5.36 \cdot 10^{-4}$	$6.78 \cdot 10^{-2}$	$6.34 \cdot 10^{-4}$	$5.97 \cdot 10^{-2}$	
2	1/100	0100	0.00 10	0110 10	0.0 0	0.000 200	
Ω_3^a	1/200	40604	$1.53 \cdot 10^{-4}$	$3.09 \cdot 10^{-2}$	$1.70 \cdot 10^{-4}$	$2.73 \cdot 10^{-2}$	
$egin{array}{c} \Omega_2^a \ \Omega_3^a \ \Omega_4 \end{array}$	1/200 1/400	40604 193272	$1.53 \cdot 10^{-4}$ $5.21 \cdot 10^{-5}$	$3.09 \cdot 10^{-2}$ $1.50 \cdot 10^{-2}$	$1.70 \cdot 10^{-4}$ $5.04 \cdot 10^{-5}$	$2.73 \cdot 10^{-2} \\ 1.34 \cdot 10^{-2}$	

Верификация: сжимающийся цилиндр

Аналитическое решение. Длина цилиндра – 8 мм. Диаметр цилиндра – [1:e]*(1 - t/4) мм, Плотность крови – 0.00106 г*мм⁻³, Вязкость крови – 0.0035 г*мм^{-1*}с⁻¹

$\Omega(t)$	Δt	tetrahedral			hexahedral		
		$ \Omega(t) $	$ \mathbf{u}_h - \mathbf{u} _{L_2}$	$ p_h - p _{L_2}$	$ \Omega(t) $	$ \mathbf{u}_h - \mathbf{u} _{L_2}$	$ p_h - p _{L_2}$ /
Ω_1	1/25	376	$4.95 \cdot 10^{-2}$	$5.05 \cdot 10^{-1}$	160	$1.04 \cdot 10^{-1}$	$1.52 \cdot 10^{-0}$
Ω_2	1/50	1668	$1.33 \cdot 10^{-2}$	$5.40 \cdot 10^{-1}$	1060	$1.56 \cdot 10^{-2}$	$3.32 \cdot 10^{-1}$
Ω_3	1/100	10186	$4.77 \cdot 10^{-3}$	$2.43 \cdot 10^{-1}$	7740	$3.65 \cdot 10^{-3}$	$1.60 \cdot 10^{-1}$
Ω_4	1/200	73856	$2.07 \cdot 10^{-3}$	$1.01 \cdot 10^{-1}$	60520	$1.49 \cdot 10^{-3}$	$7.29 \cdot 10^{-2}$
rate		-	1.20	1.27	-	1.29	1.13

$\Omega(t)$	Δt	tetrahedral			hexahedral		
		$ \Omega(t) $	$ \mathbf{u}_h - \mathbf{u} _{L_2}$	$ p_h - p _{L_2}$	$ \Omega(t) $	$ \mathbf{u}_h - \mathbf{u} _{L_2}$	$ p_h - p _{L_2}$
Ω_1^a	1/25	1104	$4.99 \cdot 10^{-2}$	$4.82 \cdot 10^{-1}$	384	$7.90 \cdot 10^{-2}$	$1.47 \cdot 10^{-0}$
$\Omega_2^{\dot{a}}$	1/50	3796	$1.32 \cdot 10^{-2}$	$4.49 \cdot 10^{-1}$	1802	$1.45 \cdot 10^{-2}$	$3.09 \cdot 10^{-1}$
$\Omega_3^{\tilde{a}}$	1/100	17459	$4.66 \cdot 10^{-3}$	$2.20\cdot10^{-1}$	10449	$3.57 \cdot 10^{-3}$	$1.48 \cdot 10^{-1}$
Ω_4^{a}	1/200	101135	$2.05 \cdot 10^{-3}$	$9.61 \cdot 10^{-2}$	71111	$1.47 \cdot 10^{-3}$	$7.05 \cdot 10^{-2}$
rate		-	1.18	1.19	-	1.28	1.07

Размеры области – 122 мм х 64 мм х 116 мм (начальный момент). Плотность крови – 0.00106 г*мм⁻³, Вязкость крови – 0.0035 г*мм⁻¹*с⁻¹

Сетка построена из сегментации последовательности снимков компьютерной томографии

Максимальная скорость, мм*с-1

Максимальное и минимальное давления (нормализованное по плотности), мм²*с⁻²

Резкие скачки давления при открытии и закрытии клапанов

Изменение числа ячеек при адаптации

Число нелинейных итераций

Рост числа нелинейных итераций при открытии и закрытии клапанов

Подвижные динамические сетки

Плотность – 0.00105 г*мм⁻³,

Вязкость – 0.000042 г*мм-1*с-1 (в сто раз менее вязкая чем коовь)

Подвижные динамические сетки

Плотность – 0.00105 г*мм⁻³,

Вязкость – 0.000042 г*мм⁻¹*с⁻¹ (в сто раз менее вязкая чем коовь)

۲

www.inmost.org www.inmost.ru

Yuri Vassilevski **Kirill Terekhov Kirill Nikitin** Ivan Kapyrin

Parallel Finite Volume Computation on General Meshes

Более 20 статей

Springer

Расчеты свертывания крови

верификация и эффект движения геометрии

Образование красного тромба

Shen F., Kastrup C.J., Liu Y., Ismagilov R.F.: *Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate.* Arteriosclerosis, thrombosis, and vascular biology. 2008, 28(11): 2035–2041.

Эксперимент в микро-капиллярах

Насыщенная тромбоцитами плазма крови, сдвиговая скорость 25 с-1

Сравнение модели с экспериментом

Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., & Volpert, V.: *A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions.* PloS one, 15(7), e0235392, 2020

Образование белого тромба

Jamiolkowski et al. (2016). Visualization and analysis of biomaterial-centered thrombus formation within a defined crevice under flow. *Biomaterials*, *96*, 72-83.

Wei-Tai Wu et al, (2017). Multiconstituent simulation of thrombus deposition. *Scientific reports*, *7*(1), 1-16. (Модель из B. Sorensen)

Сравнение с экспериментом

Отличие от предыдущего теста:

- Нет факторов свертываемости.
- Сильное действие антикоагулянта.
- Слабая роль фибрин-полимера (красный).
- Сильная роль тромбоцитов (белый).
- Текущая модель плохо улавливает динамику роста белых тромбов.

Распределение тромбоцитов

скорость сдвига 20 с⁻¹, нормальная плазма, T = 79 с, сгущение $1 \le K_f^{-1} \le 100$ мм⁻²

скорость сдвига 20 с⁻¹, нормальная плазма, изоповерхность $K_f^{-1} = 100 \text{ мм}^{-2}$

Изоповерхность тромба в профиль, деформация в виде гантели, шаг 3 с до Т = 90 с

Изоповерхность тромба в профиль, деформация в виде бегущей волны, шаг 3 с до Т = 87 с

Время перекрытия в эксперименте при сдвиговой скорости 20 с⁻¹: T \approx 180 с

Эволюция средней по объему концентрации факторов крови

Спасибо за внимание

Контакты

- **KIRILL.TEREHOV@GMAIL.COM**
- <u>YURI.VASSILEVSKI@GMAIL.COM</u>

Ссылки

- <u>WWW.INMOST.ORG</u>
- <u>WWW.INMOST.RU</u>

Поддержано грантами:

- <u>РНФ 21-71-20024 численные методы</u>
- <u>Мат. Центр 075-15-2019-1624 адаптивные сетки</u>

Верификация: каверна

Верификация: обтекание цилиндра

Уро	вень сетки	Число ячеек	Лобовая сила	Подъемная сила	Падение давления
	1	910	3.862	-0.08556	0.1481
	2	4328	4.964	-0.02525	0.1854
	3	24687	5.515	0.07256	0.1672
	4	164806	5.876	0.00803	0.1890
	3^{\dagger}	53211	6.064	0.01015	0.1801
	→ 3 [‡]	98517	6.155	0.01006	0.1792
Schäfe	r & Turek [23]	-	6.05 - 6.25	0.008-0.01	0.165 - 0.175
Braach	& Richter [7]	-	6.185331	0.00940	0.1713

Многогранные сетки с сгущением

