

Институт бионических технологий и инжиниринга

Моделирование сосудов головного мозга при церебральной анеризме

А.В. Горина¹, А.А. Галястов¹, Д.Д. Ставцев¹, А.Н. Коновалов^{1,3}, Ф.В. Гребенев^{1,3}, Д.В. Телышев^{1,2}

 Первый Московский Государственный медицинский Университет имени И.М. Сеченова
Национальный исследовательский университет «Московский институт электронной техники»
Национальный медицинский исследовательский центр нейрохирургии имени академика Н. Н. Бурденко

Аневризма - расширение сосуда, сопровождающееся истончением его стенки

Высокие значения отношения размера аневризмы и афферентного сосуда – size ratio (SR)

Повышенные и пониженные значения сдвиговых напряжений на стенках сосуда – Wall Shear Stress (WSS)

Сложная структура течения с двумя и более вихрями

ИВМ РАН 02.11.2023

Главное осложнение - разрыв аневризмы

Моделирование гемодинамики

Главное осложнение - разрыв аневризмы

Как?

3D Slicer MeshMixer Salome

ИВМ РАН 02.11.2023

Для прогнозирования возможного риска разрыва аневризмы

OpenFoam **COMSOL** Multiphysics ParaView

Компьютерное моделирование

Результаты КТ

Сегментация

Построение сетки

ИВМ РАН 02.11.2023

Граничные условия

Результаты

Обработка данных

Сегментация необходимого участка сосуда

Результаты ангиографии

ИВМ РАН 02.11.2023

Построение 3D модели

Сегментация необходимого участка

Нарушение геометрии модели

70%

80%

90%

ИВМ РАН 02.11.2023

Функция Remesh

8

Оптимизация расчётной сетки

Кол-вол элементов	Время расчета одного
сетки, тыс	сердечного цикла, ч
76	8,5
200	13,5
400	64

Особенности гемодинамики

ТЕХНОФОРУМ-2023 25.10.2023

Особенности гемодинамики

Рисунок 1 - Точки для анализа значений скорости в моделях (а - без аневризмы, б - с аневризмой)

ИВМ РАН 02.11.2023

Рисунок 2 - Значения скоростей в заданных точках (а - без аневризмы, б - с аневризмой)

Исследование гигантских аневризм (SR = 6,2)

а

Рисунок 1 – Зависимость объемного потока от времени на входе

в афферентный сосуд

Рисунок 2 – Линии тока внутри купола аневризмы при

максимальном значении скорости

Vagner, S.A., Gorina, A.V., Konovalov, A.N., Grebenev, F.V., Telyshev, D.V. Simulation of Hemodynamics in a Giant Cerebral Aneurysm // Biomedical Engineering – 2023 - Nº56 – P 404-408.

ИВМ РАН 02.11.2023

Рисунок 3 – Визуализация структуры течения в сечениях А (а) и В (б) для моментов времени τ = 0; 0,2; 0,4; 0,6 и 1

Исследование гигантских аневризм (SR = 8,85)

Рисунок 2 – Фронтальный срез КТ-ангиографии (а) и построенная 3D модель сосуда

ИВМ РАН 02.11.2023

Рисунок 3 – Линии тока внутри купола аневризмы при

максимальном значении скорости

Рисунок 4 – Сдвиговые напряжения на стенках сосуда

Валидация CFD-модели

Лазерная спекл-контрастная визуализация Цифровая трассерная велосиметрия (ЛСКВ) Particle Image Velocimetry (PIV) Laser speckle contrast imaging (LSCI) \gg \gg

- 1. Takeshi Hayakawa, Hisataka Maruyama, Takafumi Watanabe, Fumihito Arai Three-Dimensional Blood Vessel Model with Temperature-Indicating Function for Evaluation of Thermal Damage during Surgery // Sensors - 2018 - Nº18 - P 345.
- 2. Daniel P.G. Nilsson, Madelene Holmgren, Petter Holmlund, Anders Wåhlin, Anders Eklund, Tobias Dahlberg, Krister Wiklund, Magnus Andersson Patient-specifc brain arteries molded as a fexible phantom model using 3D printed water-soluble resin // Scientifc Reports. - 2022. - Nº12

ИВМ РАН

(2)

Фантом упрощенной модели

ИВМ РАН 02.11.2023

Фантом модели с реальной геометрией

Экспериментальные установки

Стенд LSCI

- 1. Микрофлюидная система
- 2. Исследуемый образец
- 3. Лазерная установка
- 4. Компьютер с ПО для управления микрофлюидной системой

ИВМ РАН 02.11.2023

Стенд PIV

- 1. Камера
- 2. Система линз и зеркал
- 3. Исследуемый образец
- 4. Hacoc
- 5. Лазерная установка

17

Рисунок 1 – Визуализация методом PIV

Рисунок 2 – Визуализация методом LSCI

Российский научный фонд

Работа выполнена при финансовой поддержке Российского Научного Фонда (проект № 22-65-00096).

Институт бионических технологий и инжиниринга

Моделирование сосудов головного мозга при церебральной анеризме Горина Анастасия