XV конференция «Математические модели и численные методы в биологии и медицине» Москва, 1-3 ноября 2023 г.

Моделирование конвекционной диффузии нейромедиатора на примере 3D модели изолированного глутаматергического синапса

Загубная Ольга Анатольевна, Нарциссов Ярослав Рюрикович

НИИ цитохимии и молекулярной фармакологии, Москва, Россия Группа биомедицинских исследований, БиДиФарма ГмбХ, Зик, Германия

Глутамат

- L-глутаминовая кислота основной возбуждающий нейромедиатор ЦНС
- Глутамат не проникает через ГЭБ и синтезируется *de novo* из α-кетоглутарата, участвует в регуляции клеточного дыхания и генерации АФК
- Глутаматэргическая нейропередача грает ключевую роль в формировании и обрезке синаптических контактов, клеточной миграции и дифференциации, а также в синаптической пластичности (сознание, память и обучение)
- Повышенный уровень глутамата приводит к чрезмерной активации глутаматных рецепторов и нейродегенерации, что определяет его эксайтотоксическое действие
- Эксайтотоксичность связывают с нарушением способности астроцитов осуществлять обратный захват глутамата и удерживать его физиологическую концентрацию в межклеточной среде
- Данное нарушение является основной чертой многих нейродегенеративных заболеваний, таких как инсульт/ишемия, эпилепсия, болезни Альцгеймера и Паркинсона, боковой амиотрофический склероз, а также черепно-мозговых травм
- Обратный захват глутамата осуществляют глутаматные переносчики, которые носят номенклатурное название переносчики возбуждающей аминокислоты (Excitatory Amino Acid Transporters)
- Определено 5 типов глутаматных переносчиков (EAAT1-5), все они принадлежат к 1А семейству переносчиков растворимых веществ (Solute Carrier 1A family, SLC1A)

Selivanov VA, Zagubnaya OA, Nartsissov YR, Cascante M. Unveiling a key role of oxaloacetate-glutamate interaction in regulation of respiration and ROS generation in nonsynaptic brain mitochondria using a kinetic model. PLoS One. 2021

Загубная О.А., Нарциссов Я.Р., Москва, 2023

Глутаматные переносчики

- Структура и функции EAAT описаны благодаря бактериальным гомологам из Pyrococcus horikoshii Glt_{Ph} и Thermococcus kodakarensis Glt_{Tk}, однако на данный момент успешно кристаллизованы EAAT1-3 человека
- Мономер ЕААТ состоит из тримеризационного и транспортного доменов и обладает воротными механизмами (шпильки HP1 и HP2).
- ЕААТ1 и ЕААТ2 гомотримеры, ЕААТ3 и ЕААТ4 гомо- и гетеротримеры с ЕААТ4 и ЕААТ3, соответственно.
- Каждая субъединица тримера ЕААТ функционирует независимо от двух соседних субъединиц белка.
- Вторичный транспорт Glu⁻ связан с совместным переносом 3 ионов Na⁺ и H⁺, и обратным переносом K^{+.}
- Анионная проводимость стехиометрически не связана с переносом субстрата. Минимальный размер пути 5,6 Å.
- 1. Zhang Z. et al. Structural basis of ligand binding modes of human EAAT2. Nat Commun. 2022.
- 2. Kovermann P et al. Cellular Physiology and Pathophysiology of EAAT Anion Channels. Frontiers in cellular neuroscience. 2022.

Локализация и характеристики ЕААТ

Белок	EAAT1 (SLC1A3)	EAAT2 (SLC1A2)	EAAT3 (SLC1A1)	EAAT4 (SLC1A6)	EAAT5 (SLC1A7)
Обозначение		0	0		
Локализация	Астроциты (СА1) мозжечка, гиппокампа и сетчатки. <u>Обнаружены</u> в обонятельных луковицах, коре, таламусе, внутреннем ухе, циркумвентрикуляр- ных органах	Астроциты гиппокампа и мозжечка. Пресинаптическая мембрана <u>нейронов</u> . <u>Обнаружены</u> в коре, таламусе, обонятельных луковицах, новой коре, полосатом теле, эпифизе	<u>Нейроны</u> гиппокампа, мозжечка и сетчатки. <u>Обнаружены в</u> спинном мозге, голубом пятне, спинальных ганглиях, коре, желудочках, почках, эпителиальных клетках кишечника.	<u>Нейроны</u> (Пуркинье) мозжечока. <u>Обнаружены в</u> глиальных культурах переднего и спинного мозга.	<u>Сетчатка:</u> <u>нейроны</u> (фоторецепторы и биполярные клетки) и <u>глия</u> (клетки Мюллера).
СІ ⁻ -проводимость	Умеренная	Низкая	Умеренная	Высокая	Высокая
Кинетические	Kм = 22÷48 μM	Kм = 12÷97 μM	Km = 42÷62 μM	Κм = 2,5 μΜ	Км = 61÷62µМ
параметры	Оборот белка = 62 мс	Оборот белка = 41 мс	Оборот белка = 10 мс	Оборот белка > 166 мс	Оборот белка > 1000 мс

1. Todd A.C. et al. The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. Int J Mol Sci. 2020.

2. Alleva C. et al. Molecular Basis of Coupled Transport and Anion Conduction in Excitatory Amino Acid Transporters. Neurochem Res. 2022.

Реконструкция фантома

- ЗD диаграмма Вороного объемный объект с определенными границами и гранями.
- Объекты объединяются друг с другом процедурами «loft» и серией Булевых операций и могут быть использованы в качестве виртуальной имитации паренхимы мозга [1].

- Между смежными объектами в соответствии с литературными данными размещаются пространства синаптических щелей [2].
- К пространству синаптической щели с помощью описанных операций протягивается отросток астроцита [3].
- Вокруг сформированных частей нейронов, синаптического контакта и окружающего контакт отростка астроцита описывается эллиптическая область определяющая местоположение интерстициальной жидкости.
- Пространство синаптической щели и эллиптическая область в совокупности являются объектом моделирования конвекционной диффузии глутамата.
- 1. Nartsissov Y.R. A novel algorithm of the digital nervous tissue phantom creation based on 3D Voronoi diagram application. J. Phys. 2021.
- 2. Nartsissov Y.R., Zagubnaya O.A. A Digital 3D Reconstruction of A Synaptic Cleft Which Can Be Used for Further Modeling of Neuromediators Convectional Diffusion in A Nervous Tissue. J. Phys. 2023.
- 3. Nartsissov, Y.R.; Ivontsin, L.A. Mathematical Modelling of Physiological Effects Caused by a Glycine Receptors Post-Synaptic Density Spatial Polymorphism. *Mathematics. 2023.*

Глутаматергический синапс

• 3D модель [1]:

Параметры синапса	Значения		
a, b, c, h; нм	450, 450, 8, 9		
Н, нм V, μм ³	25 12,5*10 ⁻³		

- Выброс нейромедиатора [2]:
 - "Kiss-and-run", пора ~ 2 нм
 - "Partial release", пора ≤ 9 нм
 - "Full fusion"
- Параметры везикул [3]:
 - D_{Ves} = 47 нм
 - Длительность выброса ~ 10 мс
 - Расстояние между везикулами 7 нм*
- 1. Nartsissov Y.R., Zagubnaya O.A. A Digital 3D Reconstruction of A Synaptic Cleft Which Can Be Used for Further Modeling of Neuromediators Convectional Diffusion in A Nervous Tissue. J. Phys. 2023.
- 2. Borges R. et al. The dynamic nature of exocytosis from large secretory vesicles. A view from electrochemistry and imaging. *Cell Calcium 110.* 2023.
- 3. Wu Q. et al. Dynamin 1 Restrains Vesicular Release to a Subquantal Mode In Mammalian Adrenal Chromaffin Cells. J. Neurosci. 39(2) 2019

нет конвекции

Начальные условия

 $C_{Glu}\left(\vec{r},t\right)\Big|_{t=0} = C_{Glu}^0$

 $[C_{Glu}^0]_{neuron} = 2 \text{ MM}$

В нейронах и астроците

Постановка задачи

- Уравнение конвекции диффузии в общем виде:
- В интерстиции нет потребления GS

$$\begin{split} \frac{\partial C_{Glu}\left(\vec{r},t\right)}{\partial t} &= -\nabla \cdot \vec{J}_{Glu} - \vec{u} \cdot \nabla C_{Glu}\left(\vec{r},t\right) + f_{consumption}\left(C_{Glu}\left(\vec{r},t\right)\right)\\ \vec{J}_{Glu} &= -D_{Glu}\nabla C_{Glu}\left(\vec{r},t\right); \end{split}$$

- Скорость конвекционного потока u = 5*10⁻⁷ м/с вдоль оси ординат
- *f*_{consumption} потребление глутамата глутаминсинтетазой (GS) в нейронах и в астроците
- Граничное условие 1 рода

$$C_{Ghu}\left(\vec{r},t\right)\big|_{\vec{r}\in\partial\Omega}=C_{Ghu}^{in}$$

• Граничное условие 2 рода для потоков внутрь или наружу моделируемого тела

$$-\vec{n}\cdot\vec{J}_{Glu}=g^{i}_{flux}\left(C_{Glu}\left(\vec{r},t\right)\right);$$

• Условие открытой границы

$$\begin{split} &-\vec{n}\cdot\vec{J}_{Glu}\left|_{\vec{r}\in\partial\Omega}=0; \ \vec{n}\cdot\vec{u}\geq 0; \\ &C_{Glu}\left(\vec{r},t\right)\right|_{\vec{r}\in\partial\Omega}=C_{Glu}^{\alpha}; \ \vec{n}\cdot\vec{u}<0; \end{split}$$

 $[C^0_{Glu}]_{astrocyte} = 0,1 \text{ MM}$ $[C^{0}_{Glu}]_{interstition} = 25 \text{ HM}$ 2.5 -1.5

Процесс моделирования

xy

k → y

На область моделирования конвекции диффузии глутамата была наложена соответствующая сетка

Частичное высвобождение глутамата

- Локальный частичный выброс глутамата из пресинаптической везикулы, C_{Glu_Ves} = 60 мМ
- Совместный выброс из двух близких к центральной части синапса
- Совместный выброс из двух отдаленных от центральной части синапса

mol/m³

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Выброс глутамата

• Спайк

$$C_{Glu}\left(\vec{r},t\right)\Big|_{\vec{r}\in\partial\Omega_{spile}} = C_{Glu}^{in} + \left(C_{Glu}^{spike} - C_{Glu}^{in}\right) \cdot \omega(t)$$

- ω(t) сглаженная П-образная функция длительностью 10 мс
- Концентрация глутамата в спайке при выбросе из одной везикулы, полученная в ходе моделирования, равна 0,25 мМ
- При описании
 одновременного выброса из двух везикул в каждой
 соответствующей выбросу
 области задавалась
 аналогичная концентрация

Конвекция диффузия глутамата

Единичный выброс в центре

- Поток глутамата в интерстиции при концентрации ЕААТ2 равной 7500 штук в 1 µм² на мембране астроцита и 750 штук в 1 µм² на мембране нейрона
- Моделирование конвекционной диффузии глутамата проводилось при температуре 37 °С.
- Кинетические параметры модели:
- ЕААТ2: К_м = 12 μМ, оборот белка 41 с⁻¹
- Глутаминсинтетаза: К_м = 1,67 мМ, V_{max} = 15,9 М*с⁻¹; [C_{GS}]_{neuron} = 0,01 кг/м³, [C_{GS}]_{astrocyte} = 0,1 кг/м³

Конвекция диффузия глутамата

Одновременный выброс двух везикул

- Поток глутамата в интерстиции при концентрации ЕААТ2 равной 7500 штук в 1 µм² на мембране астроцита и 750 штук в 1 µм² на мембране нейрона
- Моделирование конвекционной диффузии глутамата проводилось при температуре 37 °С.
- Кинетические параметры модели:
- ЕААТ2: К_м = 12 μМ, оборот белка 41 с⁻¹

Глутаминсинтетаза: К_м = 1,67 мМ, V_{max} = 15,9 М*с⁻¹; [C_{GS}]_{neuron} = 0,01 кг/м³, [C_{GS}]_{astrocyte} = 0,1 кг/м³

Выводы

- На основе экспериментальных структурных данных о размере пре-синаптических везикул, а также данных об их взаимодействии с мембраной нейронов, построена модель синаптического пространства, в которой пре-синаптическое окончание нейрона обладает геометрически выверенной системой локализации везикул на мембране с вероятными местами выброса нейромедиатора
- Полученное пространственное распределение локализаций выброса включено в структуру виртуального фантома изолированного глутаматергического синапса
- С помощью модели синаптического пространства с присоединением одной или двух везикул в различной локализации получена динамика изменения концентрации глутамата в синапсе для предельного случая непроницаемых поверхностей выбранного пространства
- В модели изолированного синапса показано, что периферический выброс глутамата из везикул формирует существенно меньшую амплитуду концентрации нейромедиатора в области локализации рецепторов (области постсинаптической плотности, PSD), по сравнению с центральной локализацией выброса. Для достижения таких же концентраций необходимо присоединение дополнительных везикул, что потенциально увеличивает возможность возрастания концентрации глутамата в интерстициальной жидкости и развития эксайтотоксичности

Загубная О.А., Нарциссов Я.Р., Москва, 2023

Благодарность

ciberehd isciii

Marta Cascante

 Виталий Александрович Селиванов

Благодарность

Нарциссов Ярослав Рюрикович, к.ф.-м.н., доцент, Заведующий сектором математического моделирования и статистической обработки результатов НИИ цитохимии и молекулярной фармакологии XV конференция «Математические модели и численные методы в биологии и медицине»

Спасибо за внимание!

Загубная О.А., Нарциссов Я.Р., Москва, 2023