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Analogies between ideas from three areas —
statistical physics,
machine learning theory,
biological Darwinian evolution.

Population genetics type model of learning — effectiveness of
purifying selection is related to absence of overfitting in learning
theory.
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Perron–Frobenius theorem. Let A = (aij) be a square matrix
with strictly positive matrix elements, then:
1) The maximal in modulus eigenvalue r (Perron–Frobenius
eigenvalue) is real and strictly positive;
2) This is simple (non-degenerate) eigenvalue;
3) The corresponding to r eigenvector (Perron–Frobenius
eigenvector) can be chosen to have strictly positive coordinates, all
other eigenvectors can not be chosen in this way;
4) limk→∞

Ak

rk
= P, P is the projection to Perron–Frobenius

eigenvector;
5) Perron–Frobenius eigenvalue r satisfies

min
i

∑
j

aij ≤ r ≤ max
i

∑
j

aij . (1)

For matrices with non-negative matrix elements analogous
properties can be obtained as limits of above properties (in
particular Perron–Frobenius eigenvalue can be degenerate and
some coordinates of the corresponding eigenvector can be zeros).



Semantic analysis of texts using Matrix Riccati equation
Yuri Manin, Matilde Marcolli, Semantic Spaces, Mathematics in
Computer Science, 10, 459–477 (2016), arXiv:1605.04238
The matrix where A4 is (N − 1)× (N − 1)–matrix, A1 is a number,
A2 and A3 are line and column of length N − 1 correspondingly

A =

(
A1 A2

A3 A4

)
The map of a projective space PN−1

A : xm =

(
1
ym

)
7→ xm+1 =

(
1

ym+1

)
, ym+1 =

A3 + A4ym
A1 + A2ym

defines a dynamic system with discrete time (by iteration of the
map) which is a discretization of the matrix Riccati equation

d

dt
y(t) = A3 + A4y(t)− y(t)A1 − y(t)A2y(t).

The Riccati flow converges to a fixed point of the dynamical
system by Perron–Frobenius theorem (if we choose A properly).



Eigen’s quasispecies model in population genetics
M. Eigen, J. McCaskill, and P. Schuster, Molecular Quasi-Species,
J. Phys. Chem. 92, 6881–6891 (1988).

A family of different ”genotypes” with populations xi ≥ 0,
i = 1, . . . , n, is considered, the total population

∑n
i=1 xi = 1.

Genotypes correspond to strings of characters (nucleotides).
ν — length of the line (the number of nucleotides in the genome),
k — number of characters in the alphabet (for nucleotides k = 4).
The accuracy of reproduction for a single nucleotide is q,
0 < q < 1, then the accuracy of reproduction of a sequence of
length ν will be equal Rii = qν . Mutation rates are

Qij = ϵd(i ,j)Rii , ϵ =
q−1 − 1

k − 1
, (2)

where d(i , j) is the Hamming distance between the i-th and j-th
genotypes (the number of different nucleotides in these genotypes).
Qii = PiRii − Di > 0, Pi and Di — reproduction and mortality
rates.



The population dynamics is given by the matrix Riccati equation

d

dt
xi (t) =

n∑
j=1

Qijxj(t)− E (t)xi (t), E (t) =
n∑

i ,j=1

Qijxj(t), (3)

off-diagonal elements Qij , i ̸= j (mutation rates), diagonal matrix
elements Qii describe reproduction rates.
Subtraction of E (t)xi (t) describes the mortality due to
competition. The total population

∑n
i=1 xi = 1 is conserved.

Analogue for discrete time:

xi (t + 1) =
1

E (t)

n∑
j=1

Qijxj(t), E (t) =
n∑

i ,j=1

Qijxj(t).

The dynamics at large times by Perron–Frobenius theorem —
convergence to highest eigenvector of Q, this is the quasispecies
surviving in evolution.



Perturbation theory by small mutation rates Qij .
Let I be the sequence with the maximum population for
Perron–Frobenius vector of Q. In the first order of perturbation

theory xI = x
(0)
I + x

(1)
I , x

(0)
I = 1, for i ̸= I

xi =
QiI

QII − Qii
, x

(1)
I = −

∑
i ̸=I

QiI

QII − Qii
. (4)

A sufficient condition for smallness of the correction — smallness
of series

∑
i ̸=I QiI for rates of mutations I → i . Moreover∑

i

QiI (5)

is an estimate of the PF eigenvalue for Q by (1). By (4) QiI

approximate coordinates of the PF vector in the first order of
perturbation theory (if we ignore denominators).



Error threshold separates the regimes of existence of well defined
quasispecies (Perron–Frobenius vector of Q is a localized peak in
the sequence space) and of error catastrophe where PF vector loses
localization. By (5) error catastrophe is the transition to
divergence for the PF eigenvalue.

If
∑

i QiI converges the model predicts an effective purifying
selection — the quasispecies will be localized on a small group of
closely related sequences. Stabilizing (purifying) selection works
due to competition between genotypes in population genetics.

Eigen’s model is a variant of a matrix Riccati equation, the main
quasispecies is the Perron–Frobenius eigenvector, and the error
catastrophe is the divergence of the Perron–Frobenius eigenvalue
in the limit of large matrices.



Generalization of Eigen’s model. Set of possible mutations
E = [e1, . . . , en]; mutations es may include duplications, point
mutations, insertions, deletions etc.
w(es) > 0 is a weight (”evolutionary effort”) to produce es .
α > 0 — inverse temperature for mutations.
Boltzmann factor e−αw(es) is the analogue of the mutation rate for
a single mutation 1− q in Eigen’s model. Mutation rate i → j

Qji =
∑
p:i→j

e−α
∑

k∈p w(es(k)), (6)

summation over p runs over paths p : i → j of generation of j from
i and summation over k runs over mutations along the path p (i.e.
k-th mutation at the path p is es). This sum over k of weights of
mutations is the analogue of the Hamming distance in (2), the
summation over paths takes in considerations retinal evolution
(possibility to access j from i taking mutations in different order).



Diagonal matrix elements Qii are defined by the functional R which
describes fitness (β > 0 is the inverse temperature for selection)

Qii = e−βR[i ]. (7)

The model of population genetics is defined by equations of the
Eigen’s model (3) with more general mutation and survival matrix
(6), (7).
Condition for effective purifying selection is the convergence of the
estimate of Perron–Frobenius eigenvalue (a statistical sum over
mutations)

Z =
∑
j

∑
p:i→j

e−α
∑

k∈p w(es(k)).

Here i is the starting point of evolution (the ancestral genome).
Critical phenomena (transition between convergence and
divergence of Z depending on the inverse temperature α) describe
the transition between regimes of effective and ineffective purifying
selection in population genetics.



Lognormal distribution in protein evolution. Orthologous
proteins are proteins in various organisms related by the same
origin. Distribution of the logarithm of the rate of amino acid
substitutions in orthologous proteins is close to the normal.
Evolution by a set of independent random edit operations of the
genome — random amino acid substitutions in a protein. The
coordinates of the PF vector, by perturbation theory (4), can be
estimated by mutation rates (10), which gives

e−α
∑

k Ek ,

where Ek are weights of mutations in the process of generation of
the genotype from the ancestor (i.e. summation over k is the
summation over mutations along the evolutionary path). If
mutations are independent (the evolution is neutral) this implies a
log-normal distribution for frequencies of proteins in orthologous
family (coordinates of the PF vector).



Power-law distribution of the sizes of families of paralogous
genes. Genes in the genome generated by evolutionary duplication
events are called paralogous. A set of genome editing operations
— gene duplication operations with weights E (evolutionary
effort). A family of N paralogous genes will correspond to N equal
weights E . For neutral evolution model describing the process of
gene duplication a coordinate of the PF vector corresponding to a
family of N paralogous genes is

e−αNE .

This gives a power-law distribution depending on the size N of the
family of paralogous genes.

By E.V.Koonin patterns of genomic evolution should be described
by a Gibbs distribution for ”interacting gas of genes”, actually
population genetics type model works, the Gibbs distribution is
given by mutation rates.



Statistical learning theory
Learning is extracting patterns from data. Supervised learning: set
of labeled data zi = (xi , yi ), xi ∈ X , yi ∈ Y . We have to find a
function (hypothesis) f : X → Y in the hypothesis space F related
to the training sample. We assume the existence of an unknown
joint probability distribution p(x , y) in X × Y . To evaluate the
hypothesis, the loss (risk) function V (f (x), y) taking non-negative
values is used, the expected risk functional is

R[f ] =

∫
X×Y

V (f (x), y)p(x , y)dxdy .

The problem of statistical learning: to find a hypothesis that
minimizes the risk functional

f = argmin
h∈F

R[h].



Since p(x , y) is unknown, the empirical risk functional is used

Remp[f ,data] =
1

n

n∑
i=1

V (f (xi ), yi ),

where data = {zi} = {(xi , yi )}, i = 1, . . . , n is a training sample.
The learning problem — find the optimal hypothesis depending on
the training sample

f [data] = argmin
h∈F

Remp[h,data].

Example: classification. Learning problem where yi = 0, 1, f
belongs to some family of characteristic functions (i.e. f (x) = 0 or
f (x) = 1), the loss function V (f (x), y) = |f (x)− y | equals zero if
f (x) = y and equals one otherwise, the empirical risk is equal to
average number of errors for the training sample:

Remp[f ,data] =
1

n

n∑
i=1

|f (xi )− yi |.



Problem of overfitting — it may happen that substitution of the
objective function f [data] computed using the training sample
data into the empirical risk functional for the control sample data′

will give high value of empirical risk. Vapnik–Chervonenkis theory
(or VC–theory) claims that overfitting is related to high entropy of
the hypothesis space.
To control overfitting, regularization is used: adding a
(non-negative) regularizing term to the empirical risk functional

H[f , data] = Remp[f , data] + Reg [f ], (8)

optimal hypothesis with regularization

fReg [data] = argmin
h∈F

H[h, data]. (9)

The regularizing term limits the entropy of the hypothesis space
(the part of this space where the regularization is small).



Darwinian evolution — analogue of learning (Turing, 1950)

Learning by population genetics — the convergence of population
of hypotheses to a peak around minimum of the risk functional

Population Genetics Type Learning Model —
analogue of considered above generalization of Eigen’s model

Regime of ineffective purifying selection (error catastrophe) —
overfitting in learning

Four phenomena are equivalent:
Error catastrophe in Eigen’s like model
Ineffective purifying selection in population genetics

Divergence of the Perron–Frobenius eigenvalue for Eigen’s like
model in the limit of large matrices

Phase transition for statistical sum over mutations
(divergence of the statistical sum for high mutation rates)

Overfitting in learning by population genetics



The hypothesis space F . Let xf (t) ≥ 0,
∑

f xf (t) = 1 be a
normalized distribution in the hypothesis space.
Family of hypothesis transformation operations (analogue of
mutations in genetics) is the list of partially defined mappings
E = [e1, . . . , en], es : F → F , weights w(es) > 0 (efforts to
perform transformations).
Hypotheses are generated from the initial hypothesis (in biology,
ancestral genome) by iterated application of hypothesis
transformation operations (in biology, mutations).
Matrix of mutation and survival rates in population genetics model

Qgf =
∑

p:f→g

e−α
∑

k∈p w(es(k)), Qff = e−βR[f ], (10)

R is the risk functional of the learning problem.



The model of learning by population genetics is given by the
matrix Riccati equation (an analogue of Eigen’s model (3))

d

dt
xf (t) =

∑
g

Qfgxg (t)− xf (t)
∑
f ,g

Qfgxg (t). (11)

The discrete time analogue is:

xf (t + 1) =

∑
g Qfgxg (t)∑
f ,g Qfgxg (t)

.

The condition of effective purifying selection is the convergence of
the estimate for Perron–Frobenius eigenvalue

Z =
∑
g

∑
p:f→g

e−α
∑

k∈p w(es(k)). (12)

Here f is the initial point of learning (the ancestral genome).



Overfitting in learning — it is not possible to separate correct and
incorrect hypotheses — analogue of ineffective purifying selection
in population genetics — divergence of the Perron–Frobenius
eigenvalue (12) (a statistical sum over mutations).
Error threshold — transition between convergence and divergence
of (12) depending on the inverse temperature α — critical
phenomenon for this statistical sum. Regularization — small
temperature (large α) — smaller part of the hypothesis space
contributes to the PF eigenvalue and the PF eigenvector.

This gives a description of overfitting from point of view of
population genetics (error catastrophe in purifying selection) and
statistical physics (phase transition in the statistical sum over
mutations). Above condition of convergence of the PF eigenvalue
(12) is much easier to satisfy compared to the restrictions of
VC-theory (finite VC-dimension).



Conclusion.

Population genetics type model in machine learning theory (a kind
of matrix Riccati equation). Learning can be described by
competition of hypotheses (”genotypes”), where hypotheses are
transformed by ”mutations”.

Condition for effectiveness of purifying selection in population
genetics corresponds to absence of overfitting in learning and is
given by convergence of Perron–Frobenius eigenvalue of the
mutation rate matrix in the limit of large matrices.

The PF eigenvalue has the form of a statistical sum over
mutations, error threshold (which separates regimes of effective
and ineffective purifying selection) looks like critical phenomenon
for this statistical sum.

This statistical sum describes experimentally observed patterns of
evolution of genomes. Universal regularization (by mutation rates)
in learning problems of evolution gives universal distributions in
genomics.


