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- Moving domain = moving mesh = 27 = reformulate the problem in a

steady reference domain at the cost of unsteady coefficients

- Linearization of the fully implicit scheme by extrapolation in time =
stability (estimate) for large At and solution of one linear system per
time step

- P,/P; (Taylor-Hood FE) is a feasible compromise between accuracy and
coarse unstructured tetrahedrizations



Computational methodology

- Consistent unstructured tetrahedral mesh
- LBB-stable pair for velocity and pressure P,/ Py, P, for displacements

- Open source software Ani3D (advanced numerical instruments 30, K Lipnikoy, YuVassilevski et al)
http://sf.net/p/ani3d/

- MUMPS as the parallel solver of linear systems
- ~ 107 cores, ~ 10 hours (3D FSI)


http://sf.net/p/ani3d/

Navier-Stokes equations in
moving domains



Prerequisites

- reference domain €

- transformation & maps Q; to Qy(t)

- vand u denote velocities and displacements in Qy
- &(X) :=x+u(x), F:= V& =1+ Vu, ) := det(F)

- Cauchy stress tensor oy

- pressures ps

- density py is constant



Incompressible fluid flow in a moving domain

Navier-Stokes equations in reference domain Qg
Let & mapping Qr to Qf(t), F = V& =1+ Vu, ) = det(F) be given

Dynamic equations

ov 1. _ _ ou .
5 = Urr) 'div (JorF~T) — Vv (F 1(V—E)> in Q

Fluid incompressibility
div(JF"'v) =0 inQy

Constitutive relation for the fluid stress tensor

o5 = —pfl + p(VVF' +F(WW)') inQ



Finite element scheme

Let V,, Q@ be Taylor-Hood P, /P, finite element spaces.
Find {vk, p*} € V;, x Qp, satisfying b.c.

("do nothing’eF~"n = 0 or no-penetration no-slip v = (& — ¢"=")/At)

Vf? _ Vk—W £k’ _ £f€7W
Jp————pdx+ [ UV [V 2> ) qpdx—
o At o L At

/ JpPFT iV dx+ [ JkgFy T VYR dxt
Qs Qs

/ V(WY T 4+ F T (VVR)TFT) : Vpdx = 0
$

JeVVE FTgdQ =0
Qf

for all ¢ and g from the appropriate FE spaces 5



Finite element scheme

The scheme
- semi-implicit
- produces one linear system per time step
- first order in time (may be generalized to the second order)

- unconditionally stable (stability estimate without CFL
restriction) and 2nd order accurate, proved with assumptions:

- info) > ¢ >0, supg(||Flle + IF"[lr) < C
- LBB-stable pairs (e.g. P,/ P;)
- Atis not large

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes

equations in moving domain with application to hemodynamics of the left ventricle. Russian J.
Numer. Anal. Math. Modelling, 32, 2017

A.Lozovskiy, M.Olshanskii, YuVassilevski. A quasi-Lagrangian finite element method for the
Navier-Stokes equations in a time-dependent domain. Comput.Methods Appl.Mech. Engrg.333,2018



Fluid-Structure Interaction
problem




Prerequisites

- reference subdomains €, Qs

- transformation & maps Qy, Qs to Qg(t), Qs(t)

- vand u denote velocity and displacement in Q := Qf U Qs
- &(X) :=x+u(x), F:= V& =1+ Vu, ) := det(F)

- Cauchy stress tensors o7, o's

- pressure ps,ps

- density py is constant



Fluid-Structure Interaction problem

Universal equations in reference subdomains

Dynamic equations

v ps 'div (JosF7T) in Qs

%)) -y (7 (v=5)) gy

Kinematic equation

ou .
E:V IﬂQS

Fluid incompressibility
div(JF7'v) =0 in

Constitutive relation for the fluid stress tensor

o5 = —pfl + p(VVF' +F(WW)') inQ



FSI problem

User-dependent equations in reference subdomains

Constitutive relation for the solid stress tensor

Os = 0'5(17 F,ps, As, s, . - ) in Qs

Monolithic approach ' : Extension of the displacement field to the fluid
domain

G(u) =0 inQy,
u=u" on o

for example, vector Laplace equation or elasticity equation

+ Initial, boundary, interface conditions (eF~'n = asF~'n)

TMichler et al (2004), Hubner et al (2004), Hron&Turek (2006),...



Numerical scheme

Find {u®*",v**", p* 1} € V) x V), x Qy satisfying b.c. and [2¢], =V on I

R+1

/ ps {%L ¢d9+/n JF@RYAstr(E(uT, TR)1 4 2usE(ufH, TF)) - Vop dQ +
+1 S

e~

/Pfjfe [ﬂ} ¢dQ+/ el VVFTTE1 () v**_[@} P dQ +
Qf ot R+1 Qf ot k

/Q 2u5)k DV ¢ Dgrap dQ ,/Q prRFT (@) i VypdQ =0 Vop € V9
f f

s R+1 s f

JoWWET L FT(MR)qdQ =0 Vg e,
Qf

Jo =)@, =2 =" Dyvi= {VVFT ()}, {A}s = %(AH-\T) E(ur, u) := {F(u1) F(up)—1}s



Numerical scheme

The scheme

- provides strong coupling on interface
- semi-implicit
- produces one linear system per time step
- may be first or second order in time
- unconditionally stable (stability estimate without CFL restriction),
proved with assumptions:
- 1Ist order in time
- St. Venant=Kirchhoff inc./comp. (experiment: neo-Hookean inc /comp.)
- extension of u to Qy guarantees J, > 0
- Atis not large

A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. Analysis and assessment of a monolithic FSI finite
element method. Computers and Fluids, 179, 2019

A.Lozovskiy, M.Olshanskii, V.Salamatova, Yu.Vassilevski. An unconditionally stable semi-implicit FSI
finite element method. Comput.Methods Appl.Mech.Engrg., 297, 2015



3D: pressure wave in flexible tube

L.Formaggia et al., CMAME 191: 561-582, 2001

t = 0.004s

t=0.0085 - = =001

Pressure wave: middle cross-section velocity field, pressure distribution, velocity vectors and 10 x
enlarged structure displacement for several time instances

- The tube (fixed at both ends) is 50mm long, it has inner diameter of 10mm and the wall
(SVK) is Tmm thick.
Left end: external pressure pey: is set to 1.333 - 10°Pa fort € 0,3 10_3)5 and zero
afterwards, a,F’Tn = pextN. Right end: open boundary

- Simulation was run with At =107*s

i
- #Tets(2s) = 6336/11904/38016, #Tets(Qy) = 13200/29202/89232



3D: pressure wave in flexible tube

L.Formaggia et al., CMAME 191: 561-582, 2001
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Pressure wave: The radial and axial components of displacement of the inner tube wall at half the
length of the pipe. Solutions are shown for three sequentially refined meshes. The plots are
almost indistinguishable.

1



Fluid-Porous Structure
Interaction problem




Prerequisites

- reference subdomains €, Qs

- transformation & maps Qy, Qs to Qg(t), Qs(t)

- vand u denote velocities and displacements in Q := Qf U Qs

- &(X) :=x+u(x), F:= V& =1+ Vu, ) := det(F)

- pressures ps,pq

- Cauchy stress tensors o7y, s, poroelastic stress op = os — apgyl

- porosity ¢, density of saturated porous medium pp = ps(1— @) + ps¢

- filtration flux g = ¢(v — vs), permeability tensor K B



Fluid-Porous Structure Interaction problem

Dynamic equations

ov 0 13 - .
Pp(thS +Pf£ = J7div(op(&)FT) in s

Ovs 0 _ _ .
wotem = Ka-FTVp  ing

0 .
Pf% =J7"div (Jor (&)F ) — pr Vv (F*W (V - %)) in Qy

Mass conservation

div(JF'v) =0 inQ and div(F(vs +Qq)) = 750% in Q

A.Lozovskiy, M.Olshanskii, YuVassilevski. A finite element scheme for the numerical solution of the
Navier-Stokes/Biot coupled problem. Russian J. Numer. Anal. Math. Modelling, 37(3), 2022



Fluid-Porous Structure Interaction problem

Kinematic equation
ou )
— =V InQ
ot °
Constitutive relation for the fluid stress tensor

o5 = —pfl + p((VVF' +F(VW)') inQ

Constitutive relation for the solid stress tensor

GS:US(L F>p$>>\5>,u$7-~~) ln QS

Conditions on actual (physical) interface

o =opn, n'omn=—pg+ Ll balance of stresses
Vi-n=(Vs+q)-n conservation of fluid
Pron = —’YPFK_%(Vf —Vs) Beavers—Joseph-Saffman

A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element scheme for the numerical solution of the
Navier-Stokes/Biot coupled problem. Russian J. Numer. Anal. Math. Modelling, 37(3), 2022



Fluid-Porous Structure Interaction problem

FE scheme with P, velocities,filtration flux,displacements and Py pressures

- provides strong coupling on interface

- semi-implicit

- produces one linear system per time step
- may be first or second order in time

- unconditionally stable (stability estimate without CFL restriction),
proved with assumptions:

- 1Ist order in time

- St. Venant-Kirchhoff inc./comp.

- extension of u to Qy guarantees J, > 0
- Atis not large

A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element scheme for the numerical solution of the
Navier-Stokes/Biot coupled problem. Russian J. Numer. Anal. Math. Modelling, 37(3), 2022



3D: pressure wave in poroelastic flexible tube

t = 0.004s t = 0.006s
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Pressure wave: porous pressure py and filtration velocity g distribution in the solid for K = 10=5mm2: middle cross-section view, with
10-fold enlarged structure displacement

The tube (fixed at both ends) is 50mm long, it has inner diameter of 10mm and the wall (SVK) is Tmm thick.

Left end: external pressure poy; is setto 1.333 - 103Pafort € 0,3 - 1073)5 and zero afterwards, o'fF’Tn = pexth. Right
end: open boundary

Simulation was run with At = 10~ %'s, #Tets(Qs) = 7200, #Tets(Qf) = 13200, #unknowns = 356000
14



3D: pressure wave in poroelastic flexible tube
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Pressure wave: The radial and axial components of displacement of the inner tube wall at half the
length of the pipe. Solutions are shown for three permeabilities.

A.Lozovskiy, M.Olshanskii, YuVassilevski. A finite element scheme for the numerical solution of the Navier-Stokes/Biot coupled problem

Russian J. Numer. Anal. Math. Modelling, 37(3), 2022 14



3D: pressure wave in poroelastic flexible tube
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Pressure wave: Wall profile on the inner side along the tube length for two time instances.

A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element scheme for the numerical solution of the Navier-Stokes/Biot coupled problem

Russian J. Numer. Anal. Math. Modelling, 37(3), 2022
14
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