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Main conclusions



Modeling of chaotic movement of individuals
in a group during evacuation from a limited
area



A model of random movement of individuals taking into account
their collisions in a limited area

The equation of random movement of individuals. Elastic collision model
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Results of simulation of movement in conditions of panic

Examples of bottlenecks in the presence of obstacles
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Examples of random trajectories of individuals during evacuation in panic conditions



The effect of panic on the evacuation time from a limited space
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Summary of the results of the first part of the study

v Chaotic movement of individuals leads to the formation of local
areas with an increased concentration of people

v The presence of persons infected with viral diseases may increase
the local concentration of virions exceeding the critical value

v' A model of COVID-19 infection and pathogen development in the
body of any individual in a group in a local atmosphere with virion
concentration fluctuations is proposed



Traditional and modified models of the

growth of the concentration of pathogens
COVID-19 in the human body



The traditional model of infection development in the human

Model constants for SARS — CoV body
dx B 1 1 concentrations of
dt T, s ; 2 X(0)=X, pathogenic cells
copies/ml
dY 1 Z 1 » concentration of
dt a T 7 X - T_Y V (O) =Yo infected cells
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Target cells Z(?) Infected cells Y(7)

concentration of
target cells affected
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(2021),e3001128. https://doi.org/10.1371/journal.pbio.3001128
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Dimensionless variables

dimensionless concentrations of virus, infected and
susceptible cells

dimensionless time

the critical value of the concentration of virions absorbed
by the body, starting from which there is an explosive
increase in the concentration of the pathogen

dimensionless characteristic times
the ratio of the initial concentration of target cells of the

body to the critical level of pathogen concentration in
the body



Equations in dimensionless form

Concentrations of pathogen and target cells
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Example of calculation according to the traditional model
Model constants for SARS — CoV - 2

) Death rate of infected 0.93 Model coefficients
cells, 1/day

,Y Maximum rate constant 4.183
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Modified model

Introduction of the degree of
immunity, critical concentration of
pathogen concentration and
virion concentration in the local
atmosphere
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Modified COVID-19 infection model

Equation for the concentration of pathogenic cells
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Equation for the concentration of infected cells
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Equation for the concentration of target cells of the body
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The system of equations of the modified model

Reduction of the system using the hypothesis of quasi-stationarity

Equation for the concentration of pathogenic cells
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Reduction of the modified model at the initial stage of infection

At the initial stage of infection until the peak
value of the pathogen concentration is reached
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Calculation of the concentration of
pathogen cells for two values of the
degree of immunity. Calculation of
solid curves in accordance with the
complete system of equations dotted
curves — calculation in accordance
with the above equation



The influence of the degree of initial immunity on the

7 dynamics of infection
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Influence of virion concentration in the atmosphere
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concentration of virions in the atmosphere and zero initial concentration of pathogen cells in
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Modeling of me



Increasing the degree of immunity during medical intervention
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An example of changes in the concentration of pathogen cells and target cells
affected by the virus in the absence of immunity and medical care (curve 1)
and taking into account medical intervention (curves 2 and 3).



Medical care in an atmosphere with a constant concentration
of virions
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Stochastic model of COVID-19 infection



Simulation of virion concentration fluctuations in the local
atmosphere

We model the concentration of virions in the local atmosphere as a statistically stationary
logarithmically normal random process

Xom (1) = <x;tm>exp[5* (t)] <E (t)> —

%
<Xatm > 1s an average value of the virion concentration in the atmosphere; angle brackets denote
averaging over an ensemble of realizations; =* (t* ) random Gaussian process with
autocorrelation function



Stochastic ordinary differential equation for virion concentration in the

atmosphere
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An example of random trajectories
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cells in an initially uninfected
organism in a local atmosphere
with fluctuations in the
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Direct numerical simulation |l

Example of random pathogen
concentration trajectories in an
organism with a given initial
pathogen concentration

Random trajectories of pathogen
concentration in the body with an
average concentration of virions in
the atmosphere above the critical
level




Probability density function method (PDF)

CD(X*,’[*) — <(p(X*,t*)> :<5(x* _X* (t*))> X" isthe point of the phase space; X (t*)

1s random concentration

Reduced equation for pathogen concentration
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Empirical PDF with a limiting function
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Empirical PDF based on the solution of a complete system
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Main conclusions

A mathematical model of COVID-19 infection of an individual in a small group of people,
among whom there are carriers of infection, has been developed

v A mathematical model of the random movement of a group of people in a limited area
is proposed. The process of evacuation from a dangerous zone with obstacles in
conditions of panic is considered

v' The traditional COVID-19 infection model has been modified. The initial degree of
immunity, the change in the rate of generation of pathogen cells from infected body
cells, the absorption of virions from the local atmosphere are taken into account

v" The results of calculations of the dynamics of the concentration of pathogen cells in an
organism with varying degrees of immunity and the concentration of virions in the
atmosphere are presented

v" A qualitative difference in the dynamics of infection in a local atmosphere with a
constant and fluctuating concentration of virions is shown

v A method for analyzing the dynamics of infection of a group of people based on the
empirical probability density function of the random concentration of the pathogen in
the body is proposed
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