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Figure 1. Scheme illustrating the evolution of possible mutations of healthy cell N. The branch
following the initial mutation K is shown in detail.



Fitness Landscape Surface
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The Eigen’s Quasispecies Model

Selection is introduced by the set of fitness landscape:
M = diag(my, ..., m;),
Mutation is described by a stochastic matrix:

Q= [qij]lxl’
q;; is probability of transition j—>i:
qij = qV~%i(1 — q)%,

q — errorless replication rate per unit, d,-j — Hamming distance for i and j.
l
Dj = Z qjim;p; — m(t)p;, j=1,..,2"N,
i=1
p = QMp — m(t)p,
l

() = ) mp;(H) = m-p(o).
j=1



The Crow-Kimura model

e | — Hamming distance to the reference sequence S, = (0, ..., 0)
e N + 1 equations for Hamming classes
e P;(t) — probabilities for Hamming classes [

dP,
dt

1 — mutation rate, m; — fitness function for the symmetric fitness landscape and distance L.

= ANGmy =)+ u(N =1+ DRy +u(l+ DPLy = P ) miPy,
l
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J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory (Harper Row,
NY, 1970).



Matrix form for the Crow-Kimura

—N 1 0 0 0
N —N 2 0 0
0 N-1 =N 3 0
M= (pij) =pQ=p| 0 0 N-2 —N 0
0 0 2 —-N N
00 0 1 -N|

p(t) =M+ uQ)P(t)N— m(t)p(t),

A =m-p) = ) mpi(t).
=0

Ref: Baake and Gabriel., Annual Reviews of Computational Physics VII, 1999: 203-264

Ref: Crow and Kimura, An introduction to population genetics theory, 1970



Open Quasispecies Model
Consider the mutation-selection process with explicit death rates under a different assumption:

Q = {ql]}' M = diag(ml, ...,mn)

du(t)

dr F(5(t))Qnu(t) — Du(t), Qmn = 0QM, S(t) = Yu;(t)
u@ =u’>0
SF(S) is restricted function and has only one maximum (5>0). Examples: F(S)= exp(—YS) or F(S) =(K-S), K>O0.
We introduce the new definition of fitness function for I ; u; > 0:

Ilvan Yegorov, Artem Novozhilov, and Alexander Bratus. Open
Quasispecies Models: Stability, Optimization, and Distributed
Extension. 2021 Math. Analysis and Application.



Open Quasispecies Model: Properties

 There are exist a unique smooth non-negative solution open quasispecies equations.
Ifd; > d > 0, then function S(%) is restricted.
The steady-state is described by the following eigenvalue problem:

D 1@ u=exp(yS@)u, y>0
Were D being diagonal death rates matrix.

* Forirreducible matrices Q,,,, one can find the maximal of real eigenvalue 4™ and
corresponding positive eigenvector: u* > 0
n J—
i=1 MiU;

. S@) =y lnas, A =
The last expression is mean steady state fitness value.
_ . 1T
u; = lim ?fo u(t)dt

T —o0
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Proposed

Postulate:

10

e The specific time of the evolutionary
adaptation (evolutionary time) for
fitness landscape and mutations matrix
elements is much slower than time
describing the active dynamics system
up to stabilization in a steady-state.

e Evolutionary changes happen during in
evolutionary time on restricted set of
possible fitness landscape and
mutation matrix elements.

e Fisher’s fundamental theorem of
natural selection is valid in evolutionary
time scale.

/I



Mathematical Justification

T = €t,

20D (o (0 ) w2

exp (7S (@ (7)) Qm (1) @ (r) = Daa(r) =0,

u(r) = }1_13% % /u(t? T)dr,
0

[
Z m;

f(@(r)) =exp(yS((r)) = =
S d;is

i=1

)-ou

T

&

)
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Problem Statement: Fitness Landscape and Mutation matrix changing in
the scale on evolutionary time

M(7) = diag (m4(7),..m,, (1)), m;(t) =0
The total available resource of fitness landscape elements is restricted by value K.
M, (t) ={)]-1mi(t) <K, VT=>0},,K>0

The total available resource of mutation matrix satisfied the following restrictions:
(

R(t) =1{Q(7) = (qij)

\

n

'

i,j=1

n )
qlJZO’l¢j’qll2h>0'2ql]=1
j=1 )




Reducing to Mathematical Programming Eigenvalue Problem.

Eigenvalue problem:

D~1Q,,(7) u(zr) = 2u(v),
D is a death rate matrix

A(T) = exp (yS (I_l(l'))) = %= (mean steady state fitness on evolutionary time)
| g

Mathematical programming problem:

A(T) - max
M(t) € M; (1), Q(t) e R(t),vT =0

13



Theorem
Let D = diag(d4, ..., d,),d > 0 be a fixed death rate matrix.

M(t) € My (1), Q(t) € R(1),VT =0
are convex set of restriction on elements of landscape and mutation matrix.

Then there exists a unique solution of mathematical programming extreme problem

U, = {ﬂ(r) € R%, S(ﬁ(r)) <S=y1ln K }

dmin



Numerical Maximization Method

Fitness variation in evolutionary time.
8f = 62" = (D71(8Q.(D)u(r), V(1))
D 1Qt, v =exp(yS)v, ¥>0

The maximization process takes the form of the multiple solutions of linear programming problem:

3f(t) » max

n n
z smy(t) = 0, z 5q;;(x) = 0, 5q;; > 0
i—1 i=1

15
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Example 1.

The result of the iteration algorithm of
evolutionary process: numerical calculations in

case, only the fitness landscape variations.
Genome length

I=16, q=06 p=009
o M=(1,0,...,0)

e Atthe beginning, the first species mO dominate,
and its mortalities was a small. Increase mortality
mO.

e D =diag(0.1, 0.001, 0.001, 0.00051, 0.001,
0.00051, 0.00051, 0.00034, 0.001, 0.00051,
0.00051,0.00034, 0.00051, 0.00034, 0.00034,
0.00026)

e  After the evolution - third type dominates: m3=1
*  The mean fitness increase in ~3.4 times

* Thefirst species lost priority due to its high death
rate

16



Example 1
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Example 1 (changing M and Q): Dynamics of the fitness landscape parameters

over evolutionary time:
number iterations

Example 1 (changing M and Q): The mean fitness valne changing over evolu-
ionary time, which is represented by the number of iterations

fitness matrix values in; in steady-states with respect to the
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Example 2.

The result of the iteration algorithm of
evolutionary process: fitness landscape and
mutation matrix variations.

l=16,q =0.6,p = 0.9

At the beginning of evolutionary adaptation

first species dominates and its mortalities
was a small.

=diag(0.0625, 0.0625, ...,0.0625)

D = diag(0.1,0.001,0.001,0.00051,
0.001,0.00051,0.00051,0.00034,
0.001,0.00051,0.00051,0.00034,

0.00051,0.00034,0.00034,0.00030).

After evolution dominate the last one:
{1_116=1. Fitness increased by almost 1.6
imes.

18



Example 2
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Example 3(subsequent M and Q changes): Dynamics of the fitness landscape
Example 3(subsequent M and @ changes): The mean fitness value changing ~ Parameters over evolutionary time: fitness matrix values m; in steady-states with respect
over evolutionary time, which is represented by the number of iterations to the number iterations
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Example 2. The result of the iteration algorithm of evolutionary process: fitness
matrix change

g;; in 1 iteration
gi; in 17173 iteration

20



Qn =

=

=

Open Crow-Kimura system with competition

=
=
=
=
e

o0 o0 o M = diag(mq,my,..., myNi1)
0 0 0 0
L D = diag(dy, dy, ..., dy+1) death rate matrix

3 N N-1 0

02 NN g (BN det|Bl £0,Bi > 0,0, =1, N+1 tit tri

0 0 1 N ij)ij=17 ,bij = 0,i,j=1, competition matrix
dv
— () = (S(v(H)) (M +pQn)v()); — divi(t) — (Bv(£));0i(h),

N+1

S(v(n) = L wit)
i=
The mean fitness of the system is defined by the expression

0, S(v)=0,

flv) = { (m,v) )
dv) - (By,v) V=0

21



7.5

5.5

Example 3

1.5
Tteration

x 104

16
@(S(u)) = exp ( vy Lff),fy = 1. Competition matrix is given as B = {bf}}
i=1

b =107* , by =107 °, i#j, 1,j=1,16. Death rates have the values 4 —=(0.0025,
0.0035, 0.0035, 0.005, 0. 00%5 0.005, 0.005, 0.0071, 0.0035, 0.005, 0.005, 0.0071, 0.005, 0.0071,
0.0071, 0.01). The set (11) is introduced by 11 = 2, K = 64. For the simulation process,
we take the evolutionary time step as AT = 1072

The fist type has both numerical and competitive advantage: 1

i,j=1"

0 _ maxm = 6,
1116

d? = min dU = 0.0025.
i= 116

According to our numerical analysis, the fitness landscape adaptation process
during the mean fitness maximization with the parameter AT was completed after 28002
iterations of algorithm described in 3. At the initial time, the steady-state distribution of
the population has the value uy =(3.2777, 0.7526, 0.7526, 0.1504, 0.7526, 0.1504, 0.1504,

0.0282, 0.7526, 0.1504, 0.1504, 0.0282, 0.1504, 0.0282, 0.0282, 0.0051). The mean fitness
increased 6.1 times.

22
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e Proposed evolutionary adaptation
process of the fitness landscape and
_ mutation matrix using the adopted
hypothesis showed change in the
population structure based on birth-

death balance and competition
interaction.

Conclusion e During evolutionary adaptation, the
mean fitness considerably increase.

e Replicator systems react on stress with
population diversification, providing
variation landscapes and mutations
together with the fitness growth.

VL A O\ /I
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Cnacmbo 3a BHMMaHue!

Questions?
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