Численное моделирование компрессии многоклеточного сфероида моделями вязкоэластичных жидкости и твердого тела.

XIII Конференция «Математические модели и численные методы в биологии и медицине»

 $P.М.Янбарисов^{1,2}$, $O.В.Василевский^{1,2}$, $O.М.Ефремов^2$, $H.В.Кошелева^2$

¹ИВМ РАН , ²Сеченовский университет

2 ноября 2021 г.

Мотивация

- Задачи биопринтинга (Ю.М. Ефремов, Н.В.Кошелева) изучение свойств многоклеточных сфероидов из биоматериала с помощью in vitro экспериментов на компрессию, разрезание, слияние.
- Цель разработка технологии, корректно предсказывающей экспериментальные результаты для компрессии и слияния.
- Предлагаемый подход применение моделей вязкоэластичных твердого тела и жидкости.

Описание эксперимента

Эксперимент состоит из трех этапов:

- Этап компрессии (36 сек) верхняя пластина двигается к нижней с постоянной скоростью.
- Этап удержания (60 сек) пластины неподвижны.
- Этап декомпрессии (36 сек) верхняя пластина удаляется от нижней.

Выходные данные:

- сила реакции на верхнюю пластину;
- форма и высота сфероида.

Компрессия многоклеточного сфероида

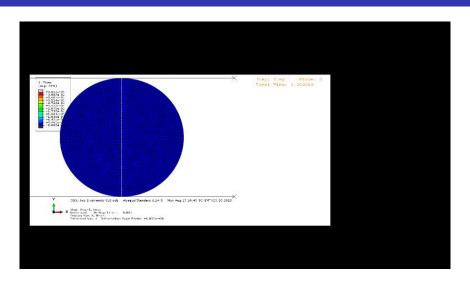


Рис.: Анимация численного эксперимента.

Модель вязкоэластичного твердого тела (ABAQUS)

- Пренебрежение инерциальными силами, описание деформаций тела через последовательность состояний.
- Принцип виртуальной работы для квазистатического состояния:

$$\int_{V} \boldsymbol{\sigma} : \delta D \, dV = \int_{S} \mathbf{t} \cdot \delta \mathbf{v} \, dS + \int_{V} \mathbf{f} \cdot \delta \mathbf{v} \, dV,$$

 σ – полный тензор напряжений, $D=\frac{\nabla v + (\nabla v)^T}{2}$, v – поле виртуальных скоростей, $t=n\cdot\sigma$ – вектор тяги, f – внешние силы.

• Уравнение состояния модели Standard Linear Solid:

$$egin{aligned} oldsymbol{\sigma}(t) &= \int\limits_0^t 2G(t-t^{'}) \dot{\mathbf{e}} dt^{'} + \mathbf{I} \int\limits_0^t K(t-t^{'}) \dot{arphi} dt^{'}, \ G(t) &= G_{\infty} + (G_0 - G_{\infty}) \mathbf{e}^{-t/\lambda_1}, \end{aligned}$$

 $G_0=rac{\mathcal{E}}{2(1+
u)}, lpha=rac{G_\infty}{G_0}, \lambda_1$ – время эластичной релаксации.

Модель вязкоэластичного материала (Floctree)

• Уравнения Навье-Стокса течения несжимаемого материала:

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = -\nabla \rho + \nabla \cdot \boldsymbol{\tau} + \rho \mathbf{g},$$
$$\nabla \cdot \mathbf{v} = 0,$$

• Реология материала задается комбинацией уравнений вязкоэластичной жидкости Олдройда-Б и гиперупругого тела нео-Гука через девиаторные напряжения τ :

$$\boldsymbol{\tau} = (1 - \alpha)\boldsymbol{\tau}_1 + \alpha\boldsymbol{\tau}_2,$$

$$\boldsymbol{\tau}_1 + \lambda_1 \overset{\nabla}{\boldsymbol{\tau}}_1 = 2\lambda_1 G_0(D + \lambda_2 \overset{\nabla}{D}),$$

$$\overset{\nabla}{\boldsymbol{\tau}_2} = 2G_0D,$$

$$\overset{\nabla}{\mathsf{C}} = \frac{\partial \mathsf{C}}{\partial t} + (\mathsf{v} \cdot \nabla) \mathsf{C} - (\nabla \mathsf{v})^\mathsf{T} \mathsf{C} - \mathsf{C}(\nabla \mathsf{v}).$$

Модель вязкоэластичного материала (Floctree)

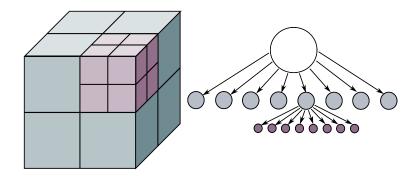
Реологическое расщепление au на вязкое и эластичное слагаемое:

$$\tau = 2(1 - \alpha)\lambda_2 G_0 D + G_0 (1 - (1 - \alpha)\beta)(A_2 - I)$$

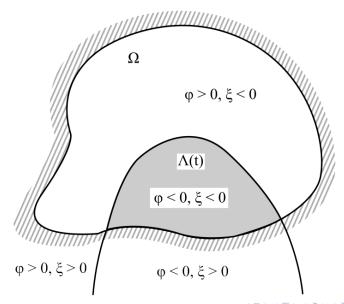
Расщепление au приводит к нестационарным уравнениям для A_1, A_2 :

 $eta = rac{\lambda_2}{\lambda_1} \le 1$ – параметр задержки модели Олдройда-Б; A_1, A_2 – конформационные тензоры эластичных деформаций.

Расчетные сетки типа восьмеричное дерево (Floctree)



Представление свободной поверхности (Floctree)



Представление свободной поверхности (Floctree)

Неявное отслеживание свободной поверхности $\Gamma(t)$ функцией уровня:

$$\phi(t,\mathsf{x}) \begin{cases} <0, & \mathsf{x} \in \Omega(t) \\ >0, & \mathsf{x} \in \mathbb{R}^3 \setminus \overline{\Omega(t)} \quad \forall t \in [0,T]. \\ =0, & \mathsf{x} \in \Gamma(t) \end{cases}$$

Функция уровня для t>0 удовлетворяет уравнению переноса:

$$\frac{\partial \phi}{\partial t} + \tilde{\mathbf{u}} \cdot \nabla \phi = 0$$
 в $\mathbb{R}^3 \times (0, T]$.

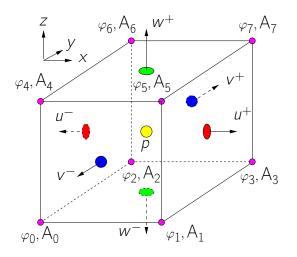
Граничные условия на свободной поверхности

ullet Условие баланса сил на $\Gamma(t)$: $-p \mathbf{n}_\Gamma + oldsymbol{ au} \mathbf{n}_\Gamma = \zeta \kappa \mathbf{n}_\Gamma$ разбивается на условия:

$$-p = \zeta \kappa,$$
$$\boldsymbol{\tau} \mathbf{n}_{\Gamma} = \mathbf{0}.$$

 n_{Γ} – вектор внешней нормали к $\Gamma(t)$, κ – сумма главных кривизн на поверхности, (– коэф-т поверхностного натяжения.

Pазнесенное расположение неизвестных (Floctree)



Численный метод приближенного решения задачи (Floctree)

$$\mathbf{u}^n, p^n, \varphi^n, A_1^n, A_2^n$$
 — аппроксимации полей в $t=t^n$. $\Omega^n=\{\mathbf{x}\in\mathbb{R}^3:\phi^n(\mathbf{x})<0\}.$ Нахождение полей в момент t^{n+1} при известных $\mathbf{u}^n, p^n, \phi^n, A_1^n, A_2^n$ производится в два шага:

- найти новую функцию уровня φ^{n+1} и область Ω^{n+1} ;
- решить уравнения импульса, массы (и состояния) для нахождения $\mathbf{u}^{n+1}, p^{n+1}, A_1^{n+1}, A_2^{n+1}$.

Решение уравнений импульса, массы и состояния (Floctree)

Неявная схема дискретизации

$$\rho\left(\left[\frac{\partial \mathbf{u}}{\partial t}\right]^{n+1} + \left(\widetilde{\mathbf{u}^{n+1}} \cdot \nabla\right) \mathbf{u}^{n+1}\right) - \nabla \cdot \widehat{\boldsymbol{\tau}}^{n+1} + \nabla \rho^{n+1} = \rho \mathbf{g},$$

$$\nabla \cdot \mathbf{u}^{n+1} = 0,$$

с линеаризацией конвективного слагаемого $u^{n+1}=u^n+\xi(u^n-u^{n-1})$ и обратной разностью 2 порядка для дискретизации по времени $(\xi=\Delta t^n/\Delta t^{n-1})$:

$$\left[\frac{\partial \mathbf{u}}{\partial t}\right]^{n+1} = \frac{\alpha_1 \mathbf{u}^{n+1} + \alpha_2 \mathbf{u}^n + \alpha_3 \mathbf{u}^{n-1}}{\Delta t^n}, \ \alpha_1 = \frac{2\xi+1}{\xi+1}, \ \alpha_2 = -(\xi+1), \ \alpha_3 = \frac{\xi^2}{\xi+1}.$$

Р.М.Янбарисов и др. (ИВМ РАН, СУ) Компрессия многоклеточного сфе

Peanuзация предложенной технологии (Floctree)

- Исследовательский программный пакет Floctree (floctree.com): C++, OpenMP, программная платформа INMOST (inmost.org).
- Авторы и разработчики проекта: к.ф.-м.н. Терехов К.М., к.ф.-м.н. Никитин К.Д., асп. Янбарисов Р.М.
- Координатор проекта: чл.-корр. РАН, проф. Василевский ЮВ



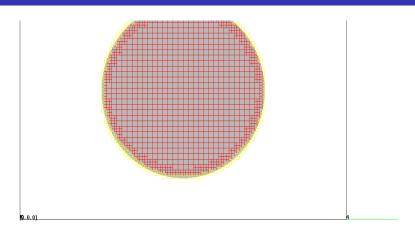
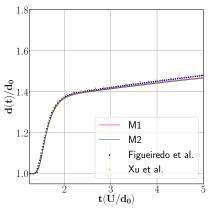


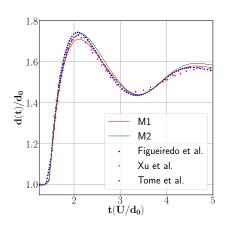
Рис.: Анимация численного эксперимента.

d_0	[M]	<i>H</i> [м]	<i>U</i> [м/с]	$\lambda_1[c]$	$μ_0$ [Πa · c]	$ ho$ [кг $/$ м 3]	$g[M/c^2]$
0.	.02	0.04	1	0.02	4	1000	9.81

- Сравнение безразмерного диаметра капли $d(t)/d_0$ от безразмерного времени $t(U/d_0)$ для капли из ньютоновской жидкости и жидкости Олдройда-Б с результатами из литературы.
- Использовались две динамически перестраиваемые расчетные сетки М1 ($h_{min}=d_0/32, h_{max}=d_0/16$) и М2 ($h_{min}=d_0/64, h_{max}=d_0/32$).



Вязкая капля (eta=1)



Вязкоэластичная капля ($\beta=0.1$)

Описание эксперимента

Эксперимент состоит из трех этапов:

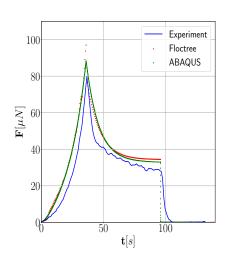
- Этап компрессии (36 сек) верхняя пластина двигается к нижней с постоянной скоростью.
- Этап удержания (60 сек) пластины неподвижны.
- Этап декомпрессии (36 сек) верхняя пластина удаляется от нижней.

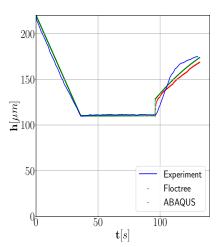
Выходные данные:

- сила реакции на верхнюю пластину;
- форма и высота сфероида.

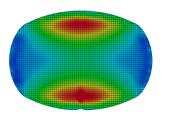
α	β	$\lambda_1[c]$	μ_0 [кПа · c]	$ ho$ [кг \cdot м $^{-3}$]
0.2	0.2	10	30	1000

Сила реакции (слева) и высота сфероида (справа)





Распределение напряжений фон Мизеса ($t=132\ { m c}$)



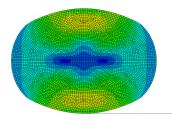


Рис.: Вязкоэластичный материал (Floctree, слева) и твердое тело (ABAQUS, справа).

Сила реакции (слева) и высота сфероида (справа)

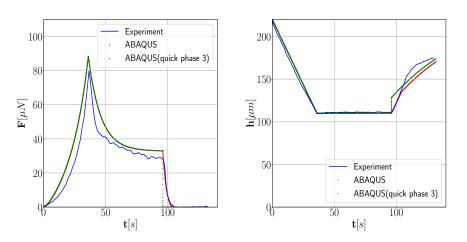


Рис.: Сравнение двух сценариев фазы освобождения с экспериментальными данными.