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Motivation



Aberrations

Ultrasound investigation in heterogeneous medium can be hampered by

aberrations

Figure 1: Medical phantom without aberrator (left) and through test aberrator

(right)

(The experimental data was provided by the group of Kulberg N.S. from Moscow

Research and Practical Centre of Medical Radiology)
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Aberrations root cause

Ultrasound waves in heterogeneous medium are reflected and refracted

multiple times by the boundaries.

Sample: ultrasound waves in a notched prism near the boundary of the

medium.
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Aberrations root cause

Sample: ultrasound waves fronts in heterogeneous medium.

Figure 2: Ultrasound waves fronts. The prism has higher sound speed than the

surrounding medium (top row), the same sound speed (medium row), lower

sound speed (bottom row).
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Direct problem



Mathematical model

Full dynamic system of equations of viscoelasticity for anisotropic

medium.
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Numerical methods

• grid-characteristic method (viscoelasticity);

• discontinuous Galerkin method (elasticity);

• ray tracing / wavefront reconstruction (acoustics).
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Phased array

Figure 3: Phased array pulse focusing in viscoelastic medium
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3D geometry

Figure 4: Ultrasound pulse in segmented 3D head model

(The geometry, segmentation and mesh were provided by the group of Vassilevski Y.V.

from INM RAS.)
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Validation

Figure 5: Experimental results Figure 6: Numerical results
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Modeling aberrations

Figure 7: Medical phantom

(experimental data) Figure 8: Notched aberrator model
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Modeling aberrations

Figure 9: Experimental results Figure 10: Numerical results

(Numerical results consider aberrator and bright pins only, grey

background is omitted for faster calculations.)
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Inverse problem



Current target problem

Aberrator position identification:

• 2D case;

• two subdomains with constant Lame coefficients and density;

• linear phased array, single element emits, all elements receive.
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Numerical approach

• SegNet-like architecture.

• Network predicts probability of the node to belong to first

subdomain.

• Weighted binary cross entropy loss function.

• Optimization via backprop with AdamW algorithm with constant

learning rate.

Figure 11: Classical SegNet pipeline
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Numerical approach

• SegNet-like architecture.

• Network predicts probability of the node to belong to first

subdomain.

• Weighted binary cross entropy loss function.

• Optimization via backprop with AdamW algorithm with constant

learning rate.

Figure 12: Our pipeline
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Case 1: sin-waved aberrator



Numerical approach

• 2000 direct problems simulations with discontinuous Galerkin

method

• Convolutional neural network (SegNet-like) is trained using the

simulated data

• Train set: square domain, sin-formed aberrator with different

parameters

• Test set: similar samples with different parameters
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Results

Jaccard index: 0.94
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Case 2: complex aberrator



Numerical approach

• 2000 direct problems simulations with discontinuous Galerkin

method

• Convolutional neural network (SegNet-like) is trained using the

simulated data

• Train set: square domain, random non-smooth curves splitting the

domain into parts

• Test set: sinusoidal and straight borders (never seen in train set)
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Validation
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Testing

18



Case 3: learning velocity model



Numerical approach

• 1600 direct problems simulations with grid-characteristic method

• 9 shots per sample

• Convolutional neural network (UNet-like) is trained using the

simulated data

• Learning velocity model, not just binary classification problem
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Sample velocity models

Figure 13: Typical model 1 Figure 14: Typical model 2
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Prediction results

Figure 15: Baseline model Figure 16: Model with Fourier images

SSIM: 0.93
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Results

Current results:

• CNNs can work in real time;

• reasonable initial results for the boundary location and velocity

model problems.

Future work:

• combine numerical and experimental data;

• use CNN output as an initial guess for gradient optimization;

• restore the aberrated data having the boundary location data.
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Thank you!
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