Fully-Implicit Finite-Volume Methods for Clot Formation Modelling

<u>K. Terekhov</u>¹, A. Bouchnita², N. Suslova⁴, V. Volpert³, Yu. Vassilevski^{1,4,5}

¹Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences
 ²Ecole Centrale Casablanca
 ³Institut Camille-Jordan, University of Lyon 1
 ⁴Sechenov University
 ⁵Moscow Institute of Physics and Technology

BIOMATH, November 2, 2021

Problem

actuality and complexity

Problem:

 Construction of threedimensional model of blood flow and coagulation, clot formation after damage of blood vessel

Healthy arteria

Atherosclerotic plaque

Clot in an artery

Clot formulation (illustration from internet)

What for?

 Three-dimensional model is needed for decision making in case of complex patientoriented geometry of blood vessel or arteria.

What for?

- Diseases of the heart and blood vessels is the primary cause o death
 - thromboembolic complications
- Three-dimensional model allows to assess the risk of
 - vessel occlusion
 - myocardial infarction

Heart model

Complexity

- Model coupling:
 - Hemodynamics model with account for fibrin-polymer permeability .
 - Model of **biochemical reactions** for blood plasma coagulation:
 - Due to damage (tissue factor);
 - Due to shear (vWF factor).
 - Model of platelets.
- Reaction cascade and model for platelets are stiff: very small time step.
- Fully implicit model.

von Willebrand factor (from Guria)

2 November 2021

- Blood is considered as an incompressible Newton's fluid: no account for complex nonlinear rheology of blood
- Blood vessels/arteria are **rigid**: no account for **wall motion**
- Fibrin-polymer is **immoble**: no account for clot **detachment**

•

٠

Complete system

Navier-Stokes system: ${\color{black}\bullet}$

$$\frac{\partial \rho u}{\partial t} + \operatorname{div}(\rho u u^{T} - \tau + p\mathbb{I}) = -\frac{\mu}{K_{f}} u,$$

$$\operatorname{div}(\rho u) = 0,$$

$$\tau = 2\mu\epsilon, \quad \epsilon = \frac{1}{2}(u\nabla^{T} + \nabla u^{T}), \quad \dot{\gamma} = ||\epsilon||_{F},$$

Prothrombin (II):
$$\frac{\partial P}{\partial t} + \operatorname{div}(Pu - D\nabla P) = -(k_{1}\phi_{c} + k_{2}B_{a} + t(T))P,$$

Thrombin (IIa):
$$\frac{\partial T}{\partial t} + \operatorname{div}(Tu - D\nabla T) = (k_{1}\phi_{c} + k_{2}B_{a} + t(T))P - k_{6}g(A, T),$$

Clot factors (IXa, Xa):
$$\frac{\partial B_{a}}{\partial t} + \operatorname{div}(B_{a}u - D\nabla B_{a}) = (k_{7}\phi_{c} + k_{8}T)(B_{0} - B_{a}) - k_{9}AB_{a},$$

Antithrombin (ATIII):
$$\frac{\partial A}{\partial t} + \operatorname{div}(Au - D\nabla A) = -k_{6}g(A, T) - k_{9}AB_{a},$$

Fibrinogen (I):
$$\frac{\partial F_{g}}{\partial t} + \operatorname{div}(F_{g}u - D\nabla F_{g}) = -\frac{k_{10}TF_{g}}{K_{10}+F_{g}},$$

To be continued...

8

Complete system

- $\frac{\partial F}{\partial t} + \operatorname{div}(F\boldsymbol{u} D\nabla F) = \frac{k_{10}TF_g}{K_{10} + F_g} k_{11}F,$ Fibrin (Ia): • Fibrin-polymer: $\frac{\partial F_p}{\partial t} = k_{11}F$, Inactivated platelets: $\frac{\partial \phi_f}{\partial t} + \operatorname{div} \left(k(\phi_c, \phi_f)(\phi_f \boldsymbol{u} - D_p \nabla \phi_f) \right) = (k_{12}T - k_{13}\phi_c - K\gamma^n)\phi_f$, ٠ Activated platelets: $\frac{\partial \phi_c}{\partial t} + \operatorname{div} \left(k (\phi_c, \phi_f) (\phi_c \boldsymbol{u} - D_p \nabla \phi_c) \right) = -(k_{12}T - k_{13}\phi_c - K\gamma^n)\phi_f,$ Platelets mobility: $k(\phi_c, \phi_f) = \tanh\left(\pi\left(1 - \frac{\phi_c + \phi_f}{\phi_{max}}\right)\right)$, • Anitcoagulation: $g(A,T) = \frac{ATH}{\alpha k_{AT}k_{T} + \alpha k_{AT}T + \alpha k_{T}A + AT}$, Thrombin generation: $t(T) = k_{3}T + k_{4}T^{2} + k_{5}T^{3}$. ٠
- Permeability: $\frac{1}{K_f} = \frac{16}{\alpha^2} \phi_p^{\frac{3}{2}} (1 + 56\phi_p) \frac{\phi_{max} + \phi_c}{\phi_{max} \phi_c}, \quad \phi_p = \min\left(\frac{7}{10}, \frac{F_p}{7000}\right)$
- Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., & Volpert, V.: A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PloS one, 15(7), e0235392, 2020

2 November 2021

Complete system

• Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., & Volpert, V.: *A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions.* PloS one, 15(7), e0235392, 2020

2 November 2021

Boundary Conditions

• BC on blood vessel damage:

$$\frac{\partial B_a}{\partial \boldsymbol{n}} = \frac{\alpha (B^0 - B_a)}{1 + \beta (B^0 - B_a)}$$

- BC for Navier-Stokes:
 - no-slip condition on walls
 - pressure drop between inflow and outflow
- BC of Dirichlet/Neumann type for blood components.
- Model parameters:
 - from literature (Griffith, Goodman, Hokin et al, Kuharsky, Leiderman, Fogelson, Wiebe et al, Tsian et al, ...),
 - from 0D thrombin generation model,
 - fitted by Anass.

Numerical Methods

for model construction

- Vassilevski, Y., Terekhov, K., Nikitin, K., & Kapyrin, I. (2020). Parallel Finite Volume Computation on General Meshes. Springer Nature.
- Terekhov, K. (2020). Collocated Finite-Volume Method for the Incompressible Navier-Stokes Problem. Journal of Numerical Mathematics.
- Terekhov K. (2021) Fully-Implicit Collocated Finite-Volume Method for the Unsteady Incompressible Navier–Stokes Problem, Numerical Geometry, Grid Generation and Scientific Computing

Finite-Volume Method

• Ostrogradsky-Gauss theorem:

$$-\operatorname{div}(\boldsymbol{A}) = \boldsymbol{g} \implies -\oint_{\partial V} \boldsymbol{A} d\boldsymbol{S} = \int_{V} \boldsymbol{g} d\boldsymbol{V}$$
$$\implies -\sum_{f \in \mathcal{F}(\boldsymbol{V})} |f| \boldsymbol{A} \boldsymbol{n}|_{\mathbf{x}_{f}} = |V| \boldsymbol{g}|_{\mathbf{x}_{V}}$$

• Requires the **flux approximation**:

$$t = \left. An
ight|_{\mathbf{x}_f}$$

• Flux:

$$\boldsymbol{t} = \begin{cases} \rho \boldsymbol{u} \boldsymbol{u}^T \boldsymbol{n} - \mu (\nabla \boldsymbol{u}^T + \boldsymbol{u} \nabla^T) \boldsymbol{n} + p \boldsymbol{n} \\ \boldsymbol{n}^T \boldsymbol{u} \end{cases}$$

• Second-order Taylor series for advective term:

$$\rho \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{n} \Big|_{\boldsymbol{x}_{f}} \approx \rho \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{n} \Big|_{\boldsymbol{x}_{1}} + \rho \frac{\partial \boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{n}}{\partial \boldsymbol{u}} \Big|_{\boldsymbol{x}_{1}} \nabla \boldsymbol{u} \big(\boldsymbol{x}_{f} - \boldsymbol{x}_{1} \big)$$
$$\approx \frac{\rho}{2} \big(\boldsymbol{u}_{1} \boldsymbol{n}^{T} + \boldsymbol{u}_{1} \cdot \boldsymbol{n} \mathbb{I} \big) \big(2 \boldsymbol{u}_{f} - \boldsymbol{u}_{1} \big)$$

• K.M. Terekhov. *Fully-Implicit Collocated Finite-Volume Method for the Unsteady Incompressible Navier-Stokes Problem*, Lecture Notes in Computational Science and Engineering, 2021

$$\boldsymbol{t} = \begin{cases} \rho \boldsymbol{u} \boldsymbol{u}^T \boldsymbol{n} - \boldsymbol{\mu} (\nabla \boldsymbol{u}^T + \boldsymbol{u} \nabla^T) \boldsymbol{n} + p \boldsymbol{n} \\ \boldsymbol{n}^T \boldsymbol{u} \end{cases}$$

- Second-order decomposition of viscous term: $-\mu (\nabla \boldsymbol{u}^{T} + \boldsymbol{u} \nabla^{T}) \boldsymbol{n} \Big|_{\boldsymbol{x}_{f}} \approx \frac{\mu}{r_{1}} (\mathbb{I} + \boldsymbol{n} \boldsymbol{n}^{T}) (\boldsymbol{u}_{1} - \boldsymbol{u}_{f})$ $-\mu \left(\mathbb{I} \otimes \boldsymbol{n}^{T} + \boldsymbol{n} \otimes \mathbb{I} - \frac{1}{r_{1}} (\mathbb{I} + \boldsymbol{n} \boldsymbol{n}^{T}) \otimes (\boldsymbol{x}_{f} - \boldsymbol{x}_{1})^{T} \right) (\boldsymbol{u}_{1} \otimes \nabla)$
- Two-point yields positive matrix coefficients.
- Transversal correction do not vanish on orthogonal grids.

•

FVM for Navier-Stokes

$$\boldsymbol{t} = \begin{cases} \rho \boldsymbol{u} \boldsymbol{u}^T \boldsymbol{n} - \mu (\nabla \boldsymbol{u}^T + \boldsymbol{u} \nabla^T) \boldsymbol{n} + \boldsymbol{p} \boldsymbol{n} \\ \boldsymbol{n}^T \boldsymbol{u} \end{cases}$$

- Decomposition of indefinite matrix coefficient: $\begin{cases} pn \\ n^{T}u \\ x_{f} \end{cases} = \begin{bmatrix} n \\ n^{T} \end{bmatrix} \begin{bmatrix} u_{f} \\ p_{f} \end{bmatrix} \\ \approx \begin{bmatrix} a(\mathbb{I} + nn^{T}) & cn \\ cn^{T} & b \end{bmatrix} \begin{bmatrix} u_{1} \\ p_{1} \end{bmatrix} - \begin{bmatrix} a(\mathbb{I} + nn^{T}) & (c-1)n \\ (c-1)n^{T} & b \end{bmatrix} \begin{bmatrix} u_{f} \\ p_{f} \end{bmatrix} \\ + \begin{bmatrix} a(\mathbb{I} + nn^{T}) & cn \\ cn^{T} & b \end{bmatrix} \otimes (x_{f} - x_{1})^{T} \left(\begin{bmatrix} u_{1} \\ p_{1} \end{bmatrix} \otimes \nabla \right)$
- Coefficients are tuned for LBB-stability.

$$\boldsymbol{t} = \begin{cases} \rho \boldsymbol{u} \boldsymbol{u}^T \boldsymbol{n} - \mu (\nabla \boldsymbol{u}^T + \boldsymbol{u} \nabla^T) \boldsymbol{n} + p \boldsymbol{n} \\ \boldsymbol{n}^T \boldsymbol{u} \end{cases}$$

• Combining the approximations: $\boldsymbol{t} \approx (T_1 - Q_1) \begin{bmatrix} \boldsymbol{u}_1 \\ p_1 \end{bmatrix} - (T_1 - S_1 - 2Q_1) \begin{bmatrix} \boldsymbol{u}_f \\ p_f \end{bmatrix} + (T_1 \otimes (\boldsymbol{x}_f - \boldsymbol{x}_1)^T - W_1) (\begin{bmatrix} \boldsymbol{u}_1 \\ p_1 \end{bmatrix} \otimes \nabla),$

• Matrix coefficients are:

$$T_{1} = \begin{bmatrix} \begin{pmatrix} a + \frac{\mu}{r_{1}} \end{pmatrix} (\mathbb{I} + nn^{T}) & cn \\ cn^{T} & b \end{bmatrix}, \quad Q_{1} = \begin{bmatrix} \frac{\rho}{2} \begin{pmatrix} u_{1}n^{T} + u_{1} \cdot n\mathbb{I} \end{pmatrix} \\ S_{1} = \begin{bmatrix} n^{T} & n \end{bmatrix}, \quad W_{1} = \begin{bmatrix} \mu(\mathbb{I} \otimes n^{T} + n \otimes \mathbb{I}) \\ \end{bmatrix}.$$

$$\boldsymbol{t} = \begin{cases} \rho \boldsymbol{u} \boldsymbol{u}^T \boldsymbol{n} - \mu (\nabla \boldsymbol{u}^T + \boldsymbol{u} \nabla^T) \boldsymbol{n} + p \boldsymbol{n} \\ \boldsymbol{n}^T \boldsymbol{u} \end{cases}$$

$$\begin{bmatrix} \boldsymbol{u}_{f} \\ p_{f} \end{bmatrix} \approx (T_{1} + T_{2} - S_{1} - S_{2} - 2Q_{1} - 2Q_{2})^{-1}$$

$$\times \begin{pmatrix} (T_{1} - Q_{1}) \begin{bmatrix} \boldsymbol{u}_{1} \\ p_{1} \end{bmatrix} + (T_{1} \otimes (\boldsymbol{x}_{f} - \boldsymbol{x}_{1})^{T} - W_{1}) \begin{pmatrix} \begin{bmatrix} \boldsymbol{u}_{1} \\ p_{1} \end{bmatrix} \otimes \nabla \end{pmatrix}$$

$$+ (T_{2} - Q_{2}) \begin{bmatrix} \boldsymbol{u}_{1} \\ p_{1} \end{bmatrix} + (T_{2} \otimes (\boldsymbol{x}_{f} - \boldsymbol{x}_{2})^{T} - W_{2}) \begin{pmatrix} \begin{bmatrix} \boldsymbol{u}_{1} \\ p_{1} \end{bmatrix} \otimes \nabla \end{pmatrix} \end{pmatrix}$$

$$\boldsymbol{t} = \begin{cases} \rho \boldsymbol{u} \boldsymbol{u}^T \boldsymbol{n} - \mu (\nabla \boldsymbol{u}^T + \boldsymbol{u} \nabla^T) \boldsymbol{n} + p \boldsymbol{n} \\ \boldsymbol{n}^T \boldsymbol{u} \end{cases}$$

• From the flux continuity:

$$\mathbf{t} \approx (T_2 - S_2 - 2Q_2)(T_1 + T_2 - S_1 - S_2 - 2Q_1 - 2Q_2)^{-1} \\ \times (T_1 - Q_1) \begin{bmatrix} \mathbf{u}_1 \\ p_1 \end{bmatrix} + (T_1 \otimes (\mathbf{x}_f - \mathbf{x}_1)^T - W_1) (\begin{bmatrix} \mathbf{u}_1 \\ p_1 \end{bmatrix} \otimes \nabla) \\ - (T_1 - S_1 - 2Q_1)(T_1 + T_2 - S_1 - S_2 - 2Q_1 - 2Q_2)^{-1} \\ \times (T_2 - Q_2) \begin{bmatrix} \mathbf{u}_1 \\ p_1 \end{bmatrix} + (T_2 \otimes (\mathbf{x}_f - \mathbf{x}_2)^T - W_2) (\begin{bmatrix} \mathbf{u}_1 \\ p_1 \end{bmatrix} \otimes \nabla)$$

• Computation of the gradients is based on the Green's formula.

• Single-sided flux expression:

$$\mathbf{t} \approx (T_1 - Q_1) \begin{bmatrix} \mathbf{u}_1 \\ p_1 \end{bmatrix} - (T_1 - S_1 - 2Q_1) \begin{bmatrix} \mathbf{u}_f \\ p_f \end{bmatrix} + \left(T_1 \otimes (\mathbf{x}_f - \mathbf{x}_1)^T - W_1\right) \nabla \otimes \begin{bmatrix} \mathbf{u}_1 \\ p_1 \end{bmatrix}$$

• Eigenvalues for
$$T_1 - Q_1$$
:
 $\lambda_{1,2} = a + \mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1 / 2 + b / 2 \pm \sqrt{\left(a + \mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1 / 2 - b / 2\right)^2 + c^2},$
 $\lambda_{3,4} = a + \mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1 / 2.$
• Eigenvalues for $T_1 - S_1 - 2Q_1$:
 $\lambda_{1,2} = a + \mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1 + b / 2 \pm \sqrt{\left(a + \mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1 - b / 2\right)^2 + (c - 1)^2},$

 $\lambda_{3,4} = a + \mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1.$

• Find **minimal possible** values with constraints:

$$a + \mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1 \ge 0, \quad a + \mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1 / 2 \ge 0,$$

$$2b \left(a + \mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1 \right) \ge (c - 1)^2, \quad 2b \left(a + \mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1 / 2 \right) \ge c^2.$$

• Results in:

$$a = \max\left(\rho \mathbf{n} \cdot \mathbf{u}_{1} - \mu r_{1}^{-1}, 0\right) + \theta > 0$$

$$b \ge \frac{1}{2} \max\left(\frac{(1-c)^{2}}{a + \mu r_{1}^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_{1}}, \frac{c^{2}}{a + \mu r_{1}^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_{1}/2}\right)$$

- If **a** is too **small**, **b** has to be **big**!
- To control this, use $\theta \equiv \rho \sqrt{\mathbf{u}_1 \left(\mathbb{I} \mathbf{n} \mathbf{n}^T \right) \mathbf{u}_1} + \varepsilon$

2 November 2021

• Find **minimal possible** values with constraints:

$$b \ge \frac{1}{2} \max\left(\frac{(1-c)^2}{a+\mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1}, \frac{c^2}{a+\mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1/2}\right)$$

Solution

$$c = \begin{cases} 1+t-\sqrt{t+t^2}, & \rho \mathbf{n} \cdot \mathbf{u}_1 > 0, \\ 1/2, & \rho \mathbf{n} \cdot \mathbf{u}_1 = 0, \\ 1+t+\sqrt{t+t^2}, & \rho \mathbf{n} \cdot \mathbf{u}_1 < 0, \end{cases}$$

• Where $c = \left(a + \mu r_1^{-1} - 1 \right)$

• Where
$$t = 2\left(\frac{a+\mu r_1}{\rho \mathbf{n} \cdot \mathbf{u}_1} - 1\right)$$

2 November 2021

• Find **minimal possible** values with constraints:

$$b \ge \frac{1}{2} \max\left(\frac{(1-c)^2}{a+\mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1}, \frac{c^2}{a+\mu r_1^{-1} - \rho \mathbf{n} \cdot \mathbf{u}_1/2}\right)$$

Solution 0.5*x*x/0.2 $b\left(a+\mu r_{1}^{-1}-\rho \mathbf{n}\cdot\mathbf{u}_{1}\right)=0$ 0.5*(1-x)*(1-x)/0.52 $\begin{cases} t\left(1/2+t-\sqrt{t+t^2}\right), & \rho \mathbf{n} \cdot \mathbf{u_1} > 0, \\ 1/8, & \rho \mathbf{n} \cdot \mathbf{u_1} = 0, \\ t\left(1/2+t+\sqrt{t+t^2}\right), & \rho \mathbf{n} \cdot \mathbf{u_1} < 0, \end{cases}$ 1.5 1 0.5 Where $t = 2\left(\frac{a + \mu r_1^{-1}}{\rho \mathbf{n} \cdot \mathbf{u}_1} - 1\right)$ 0.2 0.4 0.6 0.8 1 0 Intersection of two parabolas for **c**

2 November 2021

FVM for Blood Components

- Flux expression: $\mathbf{n}^T (C\mathbf{u} D\nabla C)$
- Advection: **first-order** upstream:

$$C\boldsymbol{n}^{T}\boldsymbol{u} \approx \frac{1}{2} \left(C_{1}(\boldsymbol{n}^{T}\boldsymbol{u} + |\boldsymbol{n}^{T}\boldsymbol{u}|) + C_{2}(\boldsymbol{n}^{T}\boldsymbol{u} - |\boldsymbol{n}^{T}\boldsymbol{u}|) \right)$$

• Diffusion: **second-order** nonlinear two-point approximation:

•

$$D\mathbf{n}^T \nabla C \approx D \frac{(C_1 - C_2)}{|\mathbf{x}_1 - \mathbf{x}_2|} - D(\mu_1 \nabla C_1 + \mu_2 \nabla C_2) \cdot \left(\mathbf{n} - \frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|}\right) = D(\mathbf{T}_1 C_1 - \mathbf{T}_2 C_2)$$

• Solution is **nonnegative** – very important for reactions!

2 November 2021

FVM for Traffic Flow

- Flux expression: $\lambda(C)\mathbf{n}^T\mathbf{u}$
 - advection: $\lambda(C) = C$
 - traffic: $\lambda(C) = C(1-C)$
 - our case: $\lambda(C) = C \tanh(1-C)$
- First-order upstream approximation:

the second		
		-
T		
		5
8 0		by Vetenov j zavitivejournal co

Moscow traffic (image from internet)

$\lambda'(C_1)\boldsymbol{n}^T\boldsymbol{u}$	$\lambda'(C_1)\boldsymbol{n}^T\boldsymbol{u}$	t
+	+	$\lambda(C_1) \boldsymbol{n}^T \boldsymbol{u}$
-	-	$\lambda(C_2)\boldsymbol{n}^T\boldsymbol{u}$
+	-	minmod($\lambda(C_1), \lambda(C_2)$) $\boldsymbol{n}^T \boldsymbol{u}$
-	+	$\lambda(C)\boldsymbol{n}^T\boldsymbol{u},\lambda'(C)=0$

FVM for Platelets

- Flux expression: $t(\phi_c, \phi_f) = \tanh\left(\pi\left(1 \frac{\phi_c + \phi_f}{\phi_{max}}\right)\right)n^T(u D_p \nabla)\begin{pmatrix}\phi_c\\\phi_f\end{pmatrix}$
- Jacobian contribution:

$$J(\phi_c, \phi_f) = \begin{pmatrix} \frac{\partial t_1(\phi_c, \phi_f)}{\partial \phi_c} & \frac{\partial t_1(\phi_c, \phi_f)}{\partial \phi_f} \\ \frac{\partial t_2(\phi_c, \phi_f)}{\partial \phi_c} & \frac{\partial t_2(\phi_c, \phi_f)}{\partial \phi_f} \end{pmatrix} \begin{pmatrix} d\phi_c \\ d\phi_f \end{pmatrix} = Q(\phi_c, \phi_f) \begin{pmatrix} d\phi_c \\ d\phi_f \end{pmatrix}$$

• Matrix-weighted combination for two cells:

$$\Phi = M_1 \begin{pmatrix} \phi_{c,1} \\ \phi_{f,1} \end{pmatrix} + M_2 \begin{pmatrix} \phi_{c,2} \\ \phi_{f,2} \end{pmatrix}$$

Platelets (image from internet)

FVM for Platelets

- Flux expression: $t(\phi_c, \phi_f) = \tanh\left(\pi\left(1 \frac{\phi_c + \phi_f}{\phi_{max}}\right)\right)n^T(u D_p \nabla)\begin{pmatrix}\phi_c\\\phi_f\end{pmatrix}$
- Iterative search:

$$J(\Phi) = Q(\Phi)M_1 \begin{pmatrix} d\phi_{c,1} \\ d\phi_{f,1} \end{pmatrix} + Q(\Phi)M_2 \begin{pmatrix} d\phi_{c,2} \\ d\phi_{f,2} \end{pmatrix}$$

Matrices are obtained using eigendecomposition:

$$Q(\Phi) = L\Lambda L^{T},$$
$$M_{1} = \frac{1}{2}L(\operatorname{sgn}(\Lambda) + |\operatorname{sgn}(\Lambda)|)L^{T}$$
$$M_{2} = \frac{1}{2}L(\operatorname{sgn}(\Lambda) - |\operatorname{sgn}(\Lambda)|)L^{T}$$

Platelets (image from internet)

Approximation for Reactions

- Reactions lead to very small time step even with fully implicit integration.
- Problem bad contribution to off-diagonal terms of Jacobian matrix.
- Automatic approach in the talk by Ivan Butakov, Moscow Institute of Physics and Technology.

Approximation for Reactions

• Red terms are extrapolated from previous time steps:

$$R(\Theta^{n+1}) \approx \begin{pmatrix} -\left(k_1\hat{\phi}_c + k_2B_{\alpha}^{n+1} + k_3\hat{T} + k_4\hat{T}^2 + k_5\hat{T}^3\right)P^{n+1} \\ \left(k_1\hat{\phi}_c + k_2B_{\alpha}^{n+1} + k_3\hat{T} + k_4\hat{T}^2 + k_5\hat{T}^3\right)P - k_6A^{n+1}T^{n+1} \\ \left(k_7\phi_c^{n+1} + k_8T^{n+1}\right)\left(B^0 - B_{\alpha}^{n+1}\right) - k_9A^{n+1}B_{\alpha}^{n+1} \\ -\left(k_6T^{n+1} + k_9B_{\alpha}^{n+1}\right)A^{n+1} \\ -\left(k_6T^{n+1} + k_9B_{\alpha}^{n+1}\right)A^{n+1} \\ -\frac{k_{10}\hat{T}F_g^{n+1}}{K_{10}+F_g^{n+1}} - k_{11}F^{n+1} \\ \frac{k_{10}\hat{T}F_g^{n+1}}{k_{11}F^{n+1}} - k_{11}F^{n+1} \\ -\left(k_{12}\hat{T} - k_{13}\phi_c^{n+1}\right)\phi_f^{n+1} \\ \left(k_{12}\hat{T} - k_{13}\phi_c^{n+1}\right)\phi_f^{n+1} \end{pmatrix} \begin{pmatrix} \varphi \\ \varphi \\ \varphi \\ \varphi \end{pmatrix}$$

• Fully implicit model with 13 unknowns.

2 November 2021

Verification

of the methods and model

Viscous Flow Past a Cylinder

Refinement	Cells	Drag	Lift	Pressure drop
1	910	3.862	-0.08556	0.1481
2	4328	4.964	-0.02525	0.1854
3	24687	5.515	0.07256	0.1672
4	164806	5.876	0.00803	0.1890
3^{\dagger}	53211	6.064	0.01015	0.1801
→ 3 [‡]	98517	6.155	0.01006	0.1792
Schäfer & Turek [23]	-	6.05 - 6.25	0.008-0.01	0.165 - 0.175
Braack & Richter [7]	-	6.185331	0.00940	0.1713

Locally refined polyhedral mesh

Cavity Flow at High Reynolds Numbers

2 November 2021

 Based on the experimental research: Shen F., Kastrup C.J., Liu Y., Ismagilov R.F.: *Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate.* Arteriosclerosis, thrombosis, and vascular biology. 2008, 28(11): 2035–2041.

Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., & Volpert, V.: *A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions.* PloS one, 15(7), e0235392, 2020

Jamiolkowski et al. (2016). Visualization and analysis of biomaterial-centered thrombus formation within a defined crevice under flow. *Biomaterials*, *96*, 72-83.

Wei-Tai Wu et al, (2017). Multiconstituent simulation of thrombus deposition. *Scientific reports*, *7*(1), 1-16.

Difference from previous test:

- No tissue factor due to damage.
- Large role of anticoagulation agent.
- Reduced role of Fibrin polymer (**red clot**).
- Larger contribution of platelets (white clot).
- Current model poorly capture white clot dynamics.

Simulated and real platelets distribution

2 November 2021

Future Directions

- Integration of automatic stabilization of chemical reactions (Ivan Butakov)
- Improve model for white clots.
- Tuning of coefficient in dependence of Supervon Willebrant length and concentration.
- Modelling of clot formation in left ventrical appendage.

Thank you for your attention!

Contacts

- **<u>KIRILL.TEREHOV@GMAIL.COM</u>**
- <u>YURI.VASSILEVSKI@GMAIL.COM</u>

Links

• <u>WWW.INMOST.ORG</u>

Supported by the RSF grant 19-71-10094

